Silencing of B7H4 Represses the Development of Oral Squamous Cell Carcinoma Through Promotion of M1 Macrophage Polarization

基因敲除 癌症研究 基因沉默 巨噬细胞极化 医学 细胞生长 小发夹RNA 免疫印迹 转移 车站3 小干扰RNA 细胞 细胞迁移 细胞培养 分子生物学 细胞凋亡 巨噬细胞 生物 转染 癌症 体外 内科学 遗传学 基因 生物化学
作者
Jingwen Chi,Yicong Liu,Lixia Yang,Jianjun Yang
出处
期刊:Journal of Oral and Maxillofacial Surgery [Elsevier BV]
卷期号:80 (8): 1408-1423 被引量:6
标识
DOI:10.1016/j.joms.2022.03.019
摘要

Purpose Tumor-associated macrophages can support oral squamous cell carcinoma (OSCC) progression, and overexpression of the immunomodulator B7H4 correlates with poor prognosis of OSCC patients. We performed this study to assess the effect of B7H4 silencing on macrophage polarization and explore the potential mechanism of B7H4 during OSCC progression. Methods Short hairpin RNA targeting B7H4 was used to knock down B7H4. The predictor variable was B7H4 expression level, and the outcome variables were SCC9 cell growth and metastasis, M1/M2 macrophage ratio, and anti-programmed death-1 (PD-1)/STAT3 pathway-related protein levels. These were measured through real-time qPCR, Western blot analysis, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine assay, and transwell assay. In addition, a tumor xenograft mouse model was used to examine the effect of B7H4 silencing (+/- Colivelin, an activator of STAT3) on tumor growth and macrophage polarization. Results The expression of B7H4 in OSCC cell lines was more than 2-fold compared with that in human normal oral keratinocytes via real-time qPCR and Western blot analysis. Knockdown of B7H4 repressed the proliferation, migration, and invasion of SCC9 cells, which were detected by 5-ethynyl-2′-deoxyuridine and transwell assay, as well as reduced PD-1/STAT3 pathway-related protein levels, promoted M1 macrophage polarization, and inhibited M2 polarization. In vivo research demonstrated that B7H4 silencing also inhibited the growth of tumor xenograft and increased the M1/M2 ratio in an OSCC mouse model. Colivelin reversed the inhibitory effects of B7H4 knockdown on OSCC progression and reversed macrophage polarization both in vitro and in vivo. Conclusions B7H4 is upregulated during OSCC progression. Its downregulation may promote M1 macrophage polarization and inhibit M2 macrophage polarization via deactivating the PD-1/STAT3 pathway, thus restraining OSCC development. Tumor-associated macrophages can support oral squamous cell carcinoma (OSCC) progression, and overexpression of the immunomodulator B7H4 correlates with poor prognosis of OSCC patients. We performed this study to assess the effect of B7H4 silencing on macrophage polarization and explore the potential mechanism of B7H4 during OSCC progression. Short hairpin RNA targeting B7H4 was used to knock down B7H4. The predictor variable was B7H4 expression level, and the outcome variables were SCC9 cell growth and metastasis, M1/M2 macrophage ratio, and anti-programmed death-1 (PD-1)/STAT3 pathway-related protein levels. These were measured through real-time qPCR, Western blot analysis, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine assay, and transwell assay. In addition, a tumor xenograft mouse model was used to examine the effect of B7H4 silencing (+/- Colivelin, an activator of STAT3) on tumor growth and macrophage polarization. The expression of B7H4 in OSCC cell lines was more than 2-fold compared with that in human normal oral keratinocytes via real-time qPCR and Western blot analysis. Knockdown of B7H4 repressed the proliferation, migration, and invasion of SCC9 cells, which were detected by 5-ethynyl-2′-deoxyuridine and transwell assay, as well as reduced PD-1/STAT3 pathway-related protein levels, promoted M1 macrophage polarization, and inhibited M2 polarization. In vivo research demonstrated that B7H4 silencing also inhibited the growth of tumor xenograft and increased the M1/M2 ratio in an OSCC mouse model. Colivelin reversed the inhibitory effects of B7H4 knockdown on OSCC progression and reversed macrophage polarization both in vitro and in vivo. B7H4 is upregulated during OSCC progression. Its downregulation may promote M1 macrophage polarization and inhibit M2 macrophage polarization via deactivating the PD-1/STAT3 pathway, thus restraining OSCC development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhiyi发布了新的文献求助30
1秒前
科研通AI2S应助wpy采纳,获得10
1秒前
夏日浅笑完成签到,获得积分10
1秒前
lixuan完成签到 ,获得积分10
2秒前
小野发布了新的文献求助10
2秒前
SciGPT应助妙手回春板蓝根采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
ZiZi应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
ZiZi应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得20
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
DijiaXu应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
ZiZi应助科研通管家采纳,获得10
6秒前
wu关闭了wu文献求助
7秒前
zxy990922发布了新的文献求助30
8秒前
打打应助阔达幼珊采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546578
求助须知:如何正确求助?哪些是违规求助? 3977757
关于积分的说明 12317153
捐赠科研通 3646147
什么是DOI,文献DOI怎么找? 2008026
邀请新用户注册赠送积分活动 1043602
科研通“疑难数据库(出版商)”最低求助积分说明 932299