Intelligent recognition of radar emitters with agile waveform based on deep reinforcement learning

波形 强化学习 雷达 计算机科学 人工智能 共发射极 敏捷软件开发 任务(项目管理) 机器学习 模式识别(心理学) 电子工程 工程类 电信 系统工程 软件工程
作者
Yuntian Feng,Guoliang Wang,Zhipeng Liu,Xiang Chen,Xiong Xu,Hui Han,Ning Tai,Ruowu Wu
出处
期刊:International Journal of Numerical Modelling-electronic Networks Devices and Fields [Wiley]
卷期号:35 (6) 被引量:2
标识
DOI:10.1002/jnm.3004
摘要

Abstract In the traditional radar emitter recognition task, the number of emitter category tags is fixed and relatively small. We input the pulse characteristic parameters into the machine learning model to model the radar emitter. The radar emitters with agile waveform involves four different waveform categories. The number of specific emitter categories contained in different waveform categories is extremely unbalanced. Their parameters vary widely, so only using the same model or strategy to model each waveform category cannot effectively extract the core features of the radar emitters with agile waveform. The above is the main reason for the low recognition accuracy of the recognition task of radar emitters with agile waveform. In this paper, a deep reinforcement learning framework is designed to be used in the intelligent recognition task of radar emitters with agile waveform. The task is regarded as a two‐step decision game. We use CNN and Bi‐LSTM to model the radar emitter, and calculate the initial state and transition state of the game. At the same time, we design the penalty function in reinforcement learning and increase the penalty for the wrong decision in the first step to deal with the imbalance of the number of emitters between different waveform categories. Finally, the Q ‐Learning algorithm with approximate values is used to learn the control strategy of the game, that is, the modeling and recognition strategy adopted for emitters of different waveform categories. The simulation experiment results show that the deep reinforcement learning framework constructed in the article can improve the recognition accuracy of 1.2% compared with the state‐of‐the‐art method in the intelligent recognition task of radar emitters with agile waveform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真三完成签到,获得积分10
1秒前
沉静的乘风完成签到,获得积分10
1秒前
迷路世立完成签到,获得积分10
2秒前
冷艳的小翠完成签到,获得积分10
3秒前
小小鱼完成签到,获得积分10
4秒前
笨笨的兰完成签到,获得积分10
6秒前
稳重紫蓝完成签到 ,获得积分10
6秒前
黑虎完成签到 ,获得积分10
6秒前
SciGPT应助jjj采纳,获得10
11秒前
11秒前
文心同学完成签到,获得积分10
14秒前
15秒前
15秒前
zhaoxiaonuan完成签到,获得积分10
15秒前
Min完成签到 ,获得积分10
18秒前
20秒前
cccyyb完成签到,获得积分10
21秒前
雪落你看不见完成签到,获得积分10
21秒前
稳赚赚完成签到,获得积分10
21秒前
光之战士完成签到 ,获得积分10
22秒前
cheng完成签到 ,获得积分10
23秒前
Phoenix ZHANG完成签到 ,获得积分10
23秒前
jjj发布了新的文献求助10
25秒前
poplar完成签到,获得积分10
25秒前
HuFan1201完成签到 ,获得积分10
26秒前
研友_ZzrWKZ完成签到 ,获得积分10
26秒前
27秒前
研友_nPxRRn完成签到,获得积分10
27秒前
4645完成签到,获得积分10
28秒前
小亮哈哈完成签到,获得积分0
28秒前
车宇完成签到 ,获得积分10
29秒前
伶俐的语雪完成签到,获得积分10
31秒前
Jankim完成签到 ,获得积分10
31秒前
阿敬完成签到,获得积分10
31秒前
nephron完成签到,获得积分10
32秒前
ypres完成签到 ,获得积分10
33秒前
壁虎君完成签到,获得积分10
35秒前
罗大大完成签到 ,获得积分10
35秒前
聚乙二醇完成签到 ,获得积分10
36秒前
何果果完成签到,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944