Monitoring seasonal effects in vegetation areas with Sentinel-1 SAR and Sentinel-2 optic satellite images

支持向量机 遥感 归一化差异植被指数 合成孔径雷达 卫星 土地覆盖 上下文图像分类 植被(病理学) 随机森林 计算机科学 人工智能 统计分类 模式识别(心理学)
作者
Ahmet Batuhan Polat,Ozgun Akcay,Fusun Balik Sanli
出处
期刊:Arabian Journal of Geosciences [Springer Nature]
卷期号:15 (7)
标识
DOI:10.1007/s12517-022-09947-x
摘要

Classification for land cover mapping is of great importance for accurate analysis and temporal monitoring of natural resources. In this study, the classification process was carried out using four synthetic aperture radar (SAR) and optical satellite images obtained in different seasons at equal intervals within a year. In addition to combining optical and SAR data for classification, single optical and SAR images have been classified separately. Thus, the effect of combining SAR and optical images on classification accuracy was examined. Moreover, the normalized difference vegetation index (NDVI), which is a vegetation index, was added to the image data, and the seasonal effect on accuracy was examined for the region with dense vegetation. In classification, three different object-oriented classification algorithms, support vector machines (SVM), random forest algorithm (RF), and k-nearest neighbors algorithm (kNN), were used. Finally, the number of training samples used for classification was increased, and its effect on accuracy was revealed in the study. The lowest overall classification accuracy was found to be 40.46% with classification using single SAR images, while the highest classification accuracy was found to be 95.12% as a result of the classification of the image obtained by combined SAR and optical satellite images. Furthermore, an additional testing area was considered to validate the method, and consistent results were obtained in that area as well. As a result, monitoring of the natural resources with high accuracy has been discussed, considering the data sources, machine learning methods, and the seasonal effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助逗号先生采纳,获得10
刚刚
chen完成签到,获得积分10
1秒前
1秒前
smallsix发布了新的文献求助10
1秒前
慕青应助冯志华采纳,获得10
2秒前
2秒前
tuo zhang完成签到,获得积分10
2秒前
2秒前
chichenglin发布了新的文献求助30
3秒前
zhang完成签到 ,获得积分10
3秒前
山椒发布了新的文献求助10
3秒前
smkmfy完成签到,获得积分10
4秒前
傻傻完成签到,获得积分10
4秒前
欢喜愫发布了新的文献求助10
4秒前
在水一方应助Damocles采纳,获得10
5秒前
今后应助bc采纳,获得10
6秒前
桃花落发布了新的文献求助10
6秒前
君君欧发布了新的文献求助10
7秒前
傻傻发布了新的文献求助10
7秒前
7秒前
迷路怀亦发布了新的文献求助10
7秒前
LL发布了新的文献求助10
8秒前
积极访冬完成签到,获得积分10
8秒前
一一完成签到 ,获得积分10
8秒前
烟花应助山椒采纳,获得10
8秒前
王小明发布了新的文献求助10
9秒前
9秒前
怕孤独的鹭洋完成签到,获得积分10
9秒前
YUZU发布了新的文献求助10
9秒前
哈哈完成签到 ,获得积分10
10秒前
10秒前
sound完成签到,获得积分10
11秒前
LQQ完成签到,获得积分10
12秒前
SciGPT应助背后的夜云采纳,获得10
12秒前
积极方盒发布了新的文献求助30
13秒前
lmd完成签到,获得积分10
13秒前
碧蓝咖啡豆完成签到 ,获得积分10
14秒前
危机的囧完成签到,获得积分10
15秒前
凡仔发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567