Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method

五元 材料科学 灰烬 作文(语言) 空格(标点符号) 热力学 冶金 相图 计算机科学 相(物质) 哲学 有机化学 化学 物理 操作系统 合金 语言学
作者
Yingzhi Zeng,Mengren Man,Kewu Bai,Yong‐Wei Zhang
出处
期刊:Acta Materialia [Elsevier]
卷期号:231: 117865-117865 被引量:6
标识
DOI:10.1016/j.actamat.2022.117865
摘要

The search for desired complex concentrated alloys (CCAs) remains a daunting task because of the vast temperature/chemical composition space. While CALPHAD is a reliable technique, it requires intensive computations. In contrast, machine-learning (ML) methods can be fast and efficient but rely on a large and high-quality dataset. In this work, we combine these two techniques by implementing a reinforcement learning strategy to accelerate the exploration of CCAs. Starting from an initial small dataset from Thermo-Calc calculations with TCHEA3 database, the reinforcement learning is performed iteratively with the XGBoost ML training/testing and CALPHAD verification to progressively augment the dataset. This strategy allows for the identification of all single-phase FCC and BCC structures in the temperature-composition space of 20 Al-containing quinary alloy families formed by Al, Co, Cr, Cu, Fe, Mn, Ni and Ti, and achieves testing accuracies of above 97% and 92% on Thermo-Calc and on experimental data, respectively. The data analyses show that these 20 families exhibit a large disparity in their single-phase formation ability with AlCoCrFeNi and AlCrFeMnNi having the highest formation ability for FCC and BCC, respectively. Remarkably, this large disparity can be well explained by refined phase selection rules and structural inheritance from binary and ternary systems. Our extensive analysis also reveals the rarity of single-phase CCAs at room temperature. The method proposed and the findings revealed present new dimensions for the design and engineering of CCAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nihil完成签到,获得积分10
刚刚
活力的泥猴桃完成签到 ,获得积分10
1秒前
1秒前
2秒前
obito完成签到,获得积分10
2秒前
娜行发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
Ck完成签到,获得积分10
4秒前
烦烦完成签到 ,获得积分10
5秒前
百宝发布了新的文献求助10
6秒前
jiangnan发布了新的文献求助10
6秒前
Sev完成签到,获得积分10
6秒前
6秒前
可耐的乘风完成签到,获得积分10
6秒前
FIN应助obito采纳,获得30
7秒前
啾啾发布了新的文献求助10
7秒前
爱学习的向日葵完成签到,获得积分10
8秒前
8秒前
华仔应助泛泛之交采纳,获得10
9秒前
雪123发布了新的文献求助10
9秒前
9秒前
10秒前
charon发布了新的文献求助10
10秒前
凶狠的食铁兽完成签到,获得积分10
10秒前
星辰大海应助花花啊采纳,获得10
10秒前
华仔应助liuyingke采纳,获得10
10秒前
HEIKU应助还不如瞎写采纳,获得10
11秒前
liuliumei发布了新的文献求助30
12秒前
zhouzhou完成签到,获得积分10
12秒前
sure发布了新的文献求助10
12秒前
上官若男应助Hu111采纳,获得10
13秒前
务实的紫伊完成签到,获得积分10
13秒前
春风得意完成签到,获得积分10
13秒前
爱你呃不可能完成签到,获得积分10
13秒前
WSY完成签到,获得积分20
13秒前
666星爷留下了新的社区评论
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672