亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method

五元 材料科学 灰烬 作文(语言) 空格(标点符号) 热力学 冶金 相图 计算机科学 相(物质) 哲学 有机化学 化学 物理 操作系统 合金 语言学
作者
Yingzhi Zeng,Mengren Man,Kewu Bai,Yong‐Wei Zhang
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:231: 117865-117865 被引量:6
标识
DOI:10.1016/j.actamat.2022.117865
摘要

The search for desired complex concentrated alloys (CCAs) remains a daunting task because of the vast temperature/chemical composition space. While CALPHAD is a reliable technique, it requires intensive computations. In contrast, machine-learning (ML) methods can be fast and efficient but rely on a large and high-quality dataset. In this work, we combine these two techniques by implementing a reinforcement learning strategy to accelerate the exploration of CCAs. Starting from an initial small dataset from Thermo-Calc calculations with TCHEA3 database, the reinforcement learning is performed iteratively with the XGBoost ML training/testing and CALPHAD verification to progressively augment the dataset. This strategy allows for the identification of all single-phase FCC and BCC structures in the temperature-composition space of 20 Al-containing quinary alloy families formed by Al, Co, Cr, Cu, Fe, Mn, Ni and Ti, and achieves testing accuracies of above 97% and 92% on Thermo-Calc and on experimental data, respectively. The data analyses show that these 20 families exhibit a large disparity in their single-phase formation ability with AlCoCrFeNi and AlCrFeMnNi having the highest formation ability for FCC and BCC, respectively. Remarkably, this large disparity can be well explained by refined phase selection rules and structural inheritance from binary and ternary systems. Our extensive analysis also reveals the rarity of single-phase CCAs at room temperature. The method proposed and the findings revealed present new dimensions for the design and engineering of CCAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
地表飞猪应助zhouleiwang采纳,获得10
1秒前
量子星尘发布了新的文献求助50
7秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
35秒前
45秒前
zhouleiwang完成签到,获得积分10
47秒前
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
茶烟梧月完成签到,获得积分10
1分钟前
茶烟梧月发布了新的文献求助30
1分钟前
斯文的难破完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
hh完成签到,获得积分20
1分钟前
1分钟前
mickaqi完成签到 ,获得积分10
1分钟前
2分钟前
汉堡包应助hh采纳,获得10
2分钟前
haralee完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
辣椒油发布了新的文献求助10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
辣椒油完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
拼搏诗翠完成签到 ,获得积分10
4分钟前
4分钟前
袅袅完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789690
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069