Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method

五元 材料科学 灰烬 作文(语言) 空格(标点符号) 热力学 冶金 相图 计算机科学 相(物质) 操作系统 化学 有机化学 合金 语言学 哲学 物理
作者
Yingzhi Zeng,Mengren Man,Kewu Bai,Yong‐Wei Zhang
出处
期刊:Acta Materialia [Elsevier]
卷期号:231: 117865-117865 被引量:6
标识
DOI:10.1016/j.actamat.2022.117865
摘要

The search for desired complex concentrated alloys (CCAs) remains a daunting task because of the vast temperature/chemical composition space. While CALPHAD is a reliable technique, it requires intensive computations. In contrast, machine-learning (ML) methods can be fast and efficient but rely on a large and high-quality dataset. In this work, we combine these two techniques by implementing a reinforcement learning strategy to accelerate the exploration of CCAs. Starting from an initial small dataset from Thermo-Calc calculations with TCHEA3 database, the reinforcement learning is performed iteratively with the XGBoost ML training/testing and CALPHAD verification to progressively augment the dataset. This strategy allows for the identification of all single-phase FCC and BCC structures in the temperature-composition space of 20 Al-containing quinary alloy families formed by Al, Co, Cr, Cu, Fe, Mn, Ni and Ti, and achieves testing accuracies of above 97% and 92% on Thermo-Calc and on experimental data, respectively. The data analyses show that these 20 families exhibit a large disparity in their single-phase formation ability with AlCoCrFeNi and AlCrFeMnNi having the highest formation ability for FCC and BCC, respectively. Remarkably, this large disparity can be well explained by refined phase selection rules and structural inheritance from binary and ternary systems. Our extensive analysis also reveals the rarity of single-phase CCAs at room temperature. The method proposed and the findings revealed present new dimensions for the design and engineering of CCAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星黛Lu完成签到,获得积分10
刚刚
刚刚
slgzhangtao完成签到,获得积分10
刚刚
所所应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
核动力驴应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
wwy应助科研通管家采纳,获得10
1秒前
wuhuhu应助科研通管家采纳,获得10
1秒前
核动力驴应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
核动力驴应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
bai完成签到,获得积分20
2秒前
wanci应助科研通管家采纳,获得10
2秒前
wwy应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
核动力驴应助科研通管家采纳,获得10
2秒前
想要发SCI的彭于晏完成签到,获得积分20
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
核动力驴应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
李志华完成签到,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077