Retinal Vessel Segmentation with Skeletal Prior and Contrastive Loss.

分割 计算机科学 稳健性(进化) 人工智能 一致性(知识库) 眼底(子宫) 模式识别(心理学)
作者
Yubo Tan,Kai-Fu Yang,Shi-Xuan Zhao,Yong-Jie Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3161681
摘要

The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yfvonne完成签到,获得积分10
1秒前
蕾蕾不爱科研完成签到,获得积分10
1秒前
苹果南烟完成签到,获得积分10
1秒前
1秒前
可靠的书本完成签到,获得积分10
1秒前
1秒前
thousandlong发布了新的文献求助10
2秒前
完美世界应助艺玲采纳,获得10
2秒前
尘南浔完成签到 ,获得积分10
2秒前
月亮明星完成签到,获得积分10
2秒前
Jasper应助einuo采纳,获得10
3秒前
3秒前
4秒前
科研小bai完成签到,获得积分10
4秒前
深情安青应助韭菜盒子采纳,获得10
4秒前
4秒前
Akim应助科研小白采纳,获得10
5秒前
Eric完成签到,获得积分10
5秒前
5秒前
Keep完成签到,获得积分20
5秒前
坚定的诗双完成签到,获得积分10
5秒前
耍酷激光豆完成签到,获得积分10
5秒前
thousandlong完成签到,获得积分10
6秒前
充电宝应助Maestro_S采纳,获得10
6秒前
6秒前
6秒前
dusai完成签到,获得积分10
6秒前
棟仔超人发布了新的文献求助10
6秒前
6秒前
7秒前
派大星和海绵宝宝完成签到,获得积分10
7秒前
HYLynn完成签到,获得积分10
8秒前
赘婿应助芋泥螺蛳猫采纳,获得10
9秒前
renjiu完成签到,获得积分10
9秒前
9秒前
rrr完成签到,获得积分10
9秒前
JACK完成签到,获得积分10
10秒前
科研欣路完成签到,获得积分10
10秒前
勿庸完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740