Retinal Vessel Segmentation with Skeletal Prior and Contrastive Loss.

分割 计算机科学 稳健性(进化) 人工智能 一致性(知识库) 眼底(子宫) 模式识别(心理学)
作者
Yubo Tan,Kai-Fu Yang,Shi-Xuan Zhao,Yong-Jie Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3161681
摘要

The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
user发布了新的文献求助10
1秒前
万能图书馆应助aaa采纳,获得10
1秒前
1秒前
风吹似夏完成签到,获得积分10
1秒前
hhh完成签到,获得积分20
2秒前
2秒前
高大的觅松完成签到,获得积分20
3秒前
3秒前
soso发布了新的文献求助10
3秒前
领导范儿应助ShuY采纳,获得10
3秒前
zzwwill完成签到,获得积分10
4秒前
4秒前
小二郎应助南松采纳,获得10
4秒前
4秒前
munire发布了新的文献求助10
4秒前
4秒前
Orange应助loong采纳,获得10
4秒前
青黄发布了新的文献求助10
4秒前
张和云完成签到,获得积分10
5秒前
lihua完成签到,获得积分10
7秒前
羊羊羊发布了新的文献求助30
7秒前
8秒前
8秒前
zhui发布了新的文献求助10
8秒前
没有梦想发布了新的文献求助10
8秒前
Yonina发布了新的文献求助10
9秒前
9秒前
tt完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
科研专家完成签到 ,获得积分10
10秒前
JamesPei应助pomelost采纳,获得10
11秒前
迅速的宛海完成签到,获得积分10
11秒前
一位名圆发布了新的文献求助10
11秒前
11秒前
ding应助JX采纳,获得10
12秒前
玉尘完成签到,获得积分20
12秒前
13秒前
orixero应助Plutus采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403