Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss.

分割 计算机科学 稳健性(进化) 人工智能 一致性(知识库) 眼底(子宫) 模式识别(心理学) 计算机视觉 医学 基因 化学 眼科 生物化学
作者
Yubo Tan,Yousuke Kaifu,Shixuan Zhao,Deleted Author ID
出处
期刊:PubMed 卷期号:41 (9): 2238-2251 被引量:7
标识
DOI:10.1109/tmi.2022.3161681
摘要

The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东桑末榆应助学术小白采纳,获得10
刚刚
yuuka发布了新的文献求助10
刚刚
liufan完成签到 ,获得积分10
1秒前
1秒前
2秒前
完美世界应助sunqian采纳,获得10
2秒前
wangxiaobin完成签到,获得积分10
3秒前
3秒前
爆米花应助茶博士采纳,获得10
4秒前
隋阳完成签到 ,获得积分10
4秒前
孙同学完成签到,获得积分10
5秒前
小小瑶瑶发布了新的文献求助10
6秒前
晚星发布了新的文献求助30
6秒前
雪白元风完成签到 ,获得积分10
7秒前
7秒前
萝卜青菜完成签到 ,获得积分10
9秒前
尹妮妮发布了新的文献求助10
9秒前
10秒前
erbdguj完成签到,获得积分10
10秒前
11秒前
善学以致用应助lindollar采纳,获得10
11秒前
心静听炊烟完成签到 ,获得积分10
11秒前
12秒前
lxk发布了新的文献求助20
12秒前
Criminology34应助培风采纳,获得10
13秒前
小蘑菇应助凡凡采纳,获得10
13秒前
胡一一完成签到,获得积分10
13秒前
科研通AI6应助胡萝卜采纳,获得10
13秒前
14秒前
吴晓娟发布了新的文献求助20
15秒前
茶博士发布了新的文献求助10
15秒前
难过的一一完成签到,获得积分10
15秒前
桃喜芒芒完成签到,获得积分20
15秒前
舒服的曼云完成签到,获得积分10
15秒前
小栗完成签到,获得积分10
16秒前
XT完成签到 ,获得积分10
17秒前
风清扬发布了新的文献求助10
17秒前
乐乐应助黑黑芝麻胡采纳,获得10
17秒前
18秒前
小栗发布了新的文献求助10
20秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379208
求助须知:如何正确求助?哪些是违规求助? 4503684
关于积分的说明 14016154
捐赠科研通 4412373
什么是DOI,文献DOI怎么找? 2423776
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394197