Retinal Vessel Segmentation with Skeletal Prior and Contrastive Loss.

分割 计算机科学 稳健性(进化) 人工智能 一致性(知识库) 眼底(子宫) 模式识别(心理学)
作者
Yubo Tan,Kai-Fu Yang,Shi-Xuan Zhao,Yong-Jie Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3161681
摘要

The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助喵喵喵采纳,获得10
1秒前
1秒前
可爱奇异果完成签到 ,获得积分10
2秒前
ff完成签到,获得积分20
2秒前
严小之发布了新的文献求助10
3秒前
5秒前
Akim应助努力的咩咩采纳,获得10
6秒前
纯真的雁山完成签到,获得积分10
8秒前
10秒前
g7001完成签到,获得积分10
12秒前
13秒前
独特的易形完成签到,获得积分10
14秒前
曹曹完成签到,获得积分20
15秒前
16秒前
打打应助烂漫的冰蓝采纳,获得10
17秒前
无能牡蛎发布了新的文献求助10
17秒前
传奇3应助liu采纳,获得10
17秒前
幸福遥完成签到,获得积分10
19秒前
无情落雁完成签到,获得积分10
19秒前
七米日光完成签到 ,获得积分10
21秒前
21秒前
无辜访彤发布了新的文献求助10
23秒前
ok123完成签到 ,获得积分10
25秒前
caq发布了新的文献求助10
26秒前
小二郎应助难摧采纳,获得10
26秒前
26秒前
qq完成签到,获得积分10
27秒前
32秒前
37秒前
38秒前
39秒前
潘妮花花完成签到 ,获得积分10
41秒前
困困发布了新的文献求助10
42秒前
44秒前
45秒前
46秒前
48秒前
49秒前
luyao发布了新的文献求助10
50秒前
虚心的清完成签到 ,获得积分10
50秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228