亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss.

分割 计算机科学 稳健性(进化) 人工智能 一致性(知识库) 眼底(子宫) 模式识别(心理学) 计算机视觉 医学 基因 化学 眼科 生物化学
作者
Yubo Tan,Yousuke Kaifu,Shixuan Zhao,Deleted Author ID
出处
期刊:PubMed 卷期号:41 (9): 2238-2251 被引量:7
标识
DOI:10.1109/tmi.2022.3161681
摘要

The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心烛发布了新的文献求助10
5秒前
14秒前
liang发布了新的文献求助10
18秒前
27秒前
所所应助liang采纳,获得10
29秒前
Beth完成签到,获得积分10
31秒前
无心烛发布了新的文献求助10
41秒前
走啊走应助科研通管家采纳,获得10
48秒前
48秒前
1分钟前
1分钟前
仓颉发布了新的文献求助10
1分钟前
SciGPT应助仓颉采纳,获得10
1分钟前
1分钟前
科目三应助无心烛采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
无心烛发布了新的文献求助30
2分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得50
2分钟前
2分钟前
无心烛发布了新的文献求助10
2分钟前
Tree_QD完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI5应助无心烛采纳,获得30
3分钟前
3分钟前
3分钟前
liang发布了新的文献求助10
3分钟前
3分钟前
liang完成签到,获得积分20
3分钟前
002发布了新的文献求助10
3分钟前
002完成签到,获得积分10
4分钟前
4分钟前
4分钟前
001完成签到,获得积分10
4分钟前
无心烛发布了新的文献求助30
4分钟前
走啊走应助科研通管家采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161530
求助须知:如何正确求助?哪些是违规求助? 4355002
关于积分的说明 13559124
捐赠科研通 4199716
什么是DOI,文献DOI怎么找? 2303266
邀请新用户注册赠送积分活动 1303253
关于科研通互助平台的介绍 1249101