Ability boosted knowledge tracing

计算机科学 可解释性 人工智能 模式(遗传算法) 追踪 机器学习 操作系统
作者
Sannyuya Liu,Jianwei Yu,Qing Li,Ruxia Liang,Yunhan Zhang,Xiaoxuan Shen,Jianwen Sun
出处
期刊:Information Sciences [Elsevier]
卷期号:596: 567-587 被引量:24
标识
DOI:10.1016/j.ins.2022.02.044
摘要

Knowledge tracing (KT) has become an increasingly relevant problem in intelligent education services, which estimates and traces the degree of learner’s mastery of concepts based on students’ responses to learning resources. The existing mainstream KT models, only attribute learners’ feedback to the degree of knowledge mastery and leave the influence of mental ability factors out of consideration. Although ability is an essential component of the problem-solving process, these knowledge-centered models cause a contradiction between data fitting and rationalization of the model decision-making process, making it difficult to achieve high precision and readability simultaneously. In this paper, an innovative KT model, ability boosted knowledge tracing (ABKT)1 is proposed, which introduces the ability factor into learning feedback attribution to enable the model to analyze the learning process from two perspectives, knowledge and ability, simultaneously. Based on constructive learning theory, continuous matrix factorization (CMF) model is proposed to simulate the knowledge internalization process, following the initiative growth and stationarity principles. In addition, the linear graph latent ability (LGLA) model is proposed to construct learner and item latent ability features, from graph-structured learner interaction data. Then, the knowledge and ability dual-tracing framework is constructed to integrate the knowledge and ability modules. Experimental results on four public databases indicate that the proposed methods perform better than state-of-the-art knowledge tracing algorithms in terms of prediction accuracy in quantitative assessments, displaying some advantages in model interpretability and intelligibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
菜就多练发布了新的文献求助10
刚刚
豆芽菜发布了新的文献求助10
1秒前
maqin完成签到,获得积分10
1秒前
顺心的太兰完成签到,获得积分10
1秒前
3秒前
我是老大应助meimei采纳,获得10
3秒前
李健的小迷弟应助Eric_chao采纳,获得10
3秒前
3秒前
健康的友琴完成签到,获得积分10
3秒前
hdd发布了新的文献求助10
3秒前
3秒前
wiee发布了新的文献求助10
3秒前
科研通AI2S应助mly采纳,获得10
4秒前
4秒前
孙闹闹完成签到,获得积分10
4秒前
HR112应助爱吃锅巴肉片采纳,获得10
5秒前
咚咚咚关注了科研通微信公众号
5秒前
健忘的无招完成签到,获得积分10
5秒前
爆米花应助阳佟之槐采纳,获得10
6秒前
6秒前
科研乞丐应助Goooood采纳,获得20
6秒前
dc完成签到,获得积分10
6秒前
6秒前
酷卡卡完成签到,获得积分10
6秒前
7秒前
Qzy发布了新的文献求助10
7秒前
7秒前
492754592发布了新的文献求助10
8秒前
8秒前
张茜发布了新的文献求助10
8秒前
小妖怪完成签到 ,获得积分10
8秒前
8秒前
8秒前
学海无涯完成签到,获得积分10
8秒前
Cloris发布了新的文献求助10
8秒前
Lx_B完成签到,获得积分10
9秒前
Jasper应助懒癌晚期采纳,获得10
9秒前
华仔应助光暗影采纳,获得10
9秒前
Nicole发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5398805
求助须知:如何正确求助?哪些是违规求助? 4518348
关于积分的说明 14069065
捐赠科研通 4430606
什么是DOI,文献DOI怎么找? 2432853
邀请新用户注册赠送积分活动 1425258
关于科研通互助平台的介绍 1404284