Ability boosted knowledge tracing

计算机科学 可解释性 人工智能 模式(遗传算法) 追踪 机器学习 操作系统
作者
Sannyuya Liu,Jianwei Yu,Qing Li,Ruxia Liang,Yunhan Zhang,Xiaoxuan Shen,Jianwen Sun
出处
期刊:Information Sciences [Elsevier]
卷期号:596: 567-587 被引量:24
标识
DOI:10.1016/j.ins.2022.02.044
摘要

Knowledge tracing (KT) has become an increasingly relevant problem in intelligent education services, which estimates and traces the degree of learner’s mastery of concepts based on students’ responses to learning resources. The existing mainstream KT models, only attribute learners’ feedback to the degree of knowledge mastery and leave the influence of mental ability factors out of consideration. Although ability is an essential component of the problem-solving process, these knowledge-centered models cause a contradiction between data fitting and rationalization of the model decision-making process, making it difficult to achieve high precision and readability simultaneously. In this paper, an innovative KT model, ability boosted knowledge tracing (ABKT)1 is proposed, which introduces the ability factor into learning feedback attribution to enable the model to analyze the learning process from two perspectives, knowledge and ability, simultaneously. Based on constructive learning theory, continuous matrix factorization (CMF) model is proposed to simulate the knowledge internalization process, following the initiative growth and stationarity principles. In addition, the linear graph latent ability (LGLA) model is proposed to construct learner and item latent ability features, from graph-structured learner interaction data. Then, the knowledge and ability dual-tracing framework is constructed to integrate the knowledge and ability modules. Experimental results on four public databases indicate that the proposed methods perform better than state-of-the-art knowledge tracing algorithms in terms of prediction accuracy in quantitative assessments, displaying some advantages in model interpretability and intelligibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田柾国发布了新的文献求助10
1秒前
单纯板凳发布了新的文献求助10
4秒前
Cheryy完成签到,获得积分10
6秒前
7秒前
干净的井完成签到,获得积分10
10秒前
陈晓迪1992完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
小学生完成签到,获得积分10
17秒前
临妤发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
尊敬硬币发布了新的文献求助20
25秒前
27秒前
龙门花甲完成签到,获得积分20
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
xjcy应助科研通管家采纳,获得30
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
pikachu应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
29秒前
cc小木屋应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
渝州人完成签到,获得积分10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
30秒前
30秒前
30秒前
科研通AI2S应助red采纳,获得10
31秒前
31秒前
可耐的妙海完成签到 ,获得积分10
31秒前
Lee完成签到,获得积分10
35秒前
Orange应助frantumaglia采纳,获得10
35秒前
37秒前
40秒前
Lee发布了新的文献求助10
40秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166424
求助须知:如何正确求助?哪些是违规求助? 2817875
关于积分的说明 7918097
捐赠科研通 2477432
什么是DOI,文献DOI怎么找? 1319613
科研通“疑难数据库(出版商)”最低求助积分说明 632536
版权声明 602415