Ability boosted knowledge tracing

计算机科学 可解释性 人工智能 模式(遗传算法) 追踪 机器学习 操作系统
作者
Sannyuya Liu,Jianwei Yu,Qing Li,Ruxia Liang,Yunhan Zhang,Xiaoxuan Shen,Jianwen Sun
出处
期刊:Information Sciences [Elsevier BV]
卷期号:596: 567-587 被引量:24
标识
DOI:10.1016/j.ins.2022.02.044
摘要

Knowledge tracing (KT) has become an increasingly relevant problem in intelligent education services, which estimates and traces the degree of learner’s mastery of concepts based on students’ responses to learning resources. The existing mainstream KT models, only attribute learners’ feedback to the degree of knowledge mastery and leave the influence of mental ability factors out of consideration. Although ability is an essential component of the problem-solving process, these knowledge-centered models cause a contradiction between data fitting and rationalization of the model decision-making process, making it difficult to achieve high precision and readability simultaneously. In this paper, an innovative KT model, ability boosted knowledge tracing (ABKT)1 is proposed, which introduces the ability factor into learning feedback attribution to enable the model to analyze the learning process from two perspectives, knowledge and ability, simultaneously. Based on constructive learning theory, continuous matrix factorization (CMF) model is proposed to simulate the knowledge internalization process, following the initiative growth and stationarity principles. In addition, the linear graph latent ability (LGLA) model is proposed to construct learner and item latent ability features, from graph-structured learner interaction data. Then, the knowledge and ability dual-tracing framework is constructed to integrate the knowledge and ability modules. Experimental results on four public databases indicate that the proposed methods perform better than state-of-the-art knowledge tracing algorithms in terms of prediction accuracy in quantitative assessments, displaying some advantages in model interpretability and intelligibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cullen完成签到 ,获得积分20
刚刚
pqy发布了新的文献求助10
刚刚
田様应助ppkdc采纳,获得10
刚刚
择一完成签到,获得积分10
刚刚
1秒前
又又完成签到,获得积分10
1秒前
zzzyyyuuu完成签到 ,获得积分10
1秒前
1秒前
2秒前
以柠发布了新的文献求助30
3秒前
无花果应助西瓜采纳,获得10
3秒前
芸沐发布了新的文献求助10
3秒前
max发布了新的文献求助10
3秒前
孙刚发布了新的文献求助10
4秒前
叮当发布了新的文献求助10
4秒前
舒心的依风完成签到,获得积分10
4秒前
专业美女制造完成签到,获得积分10
4秒前
cure发布了新的文献求助10
4秒前
4秒前
薇薇安发布了新的文献求助10
5秒前
5秒前
ZZZ完成签到,获得积分10
5秒前
禁止通行发布了新的文献求助10
5秒前
酷酷的傲之完成签到,获得积分10
6秒前
Ava应助枝江小学生采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
Clown完成签到,获得积分10
8秒前
8秒前
囿于一隅完成签到,获得积分10
9秒前
9秒前
酒笙完成签到,获得积分10
10秒前
Ava应助活泼的寄风采纳,获得10
11秒前
寒冷的世界完成签到 ,获得积分10
11秒前
行7发布了新的文献求助10
11秒前
帕尼灬尼发布了新的文献求助10
11秒前
Owen应助江边鸟采纳,获得30
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635