A survey on next location prediction techniques, applications, and challenges

计算机科学 弹道 数据科学 大数据 数据挖掘 领域(数学) 人体动力学 城市计算 机器学习 人工智能 物理 数学 天文 纯数学
作者
Ayele Gobezie Chekol,Marta Sintayehu Fufa
出处
期刊:Eurasip Journal on Wireless Communications and Networking [Springer Nature]
卷期号:2022 (1) 被引量:19
标识
DOI:10.1186/s13638-022-02114-6
摘要

Abstract Next location prediction has recently gained great attention from researchers due to its importance in different application areas. Recent growth of location-based service applications has vast domain influence such as traffic-flow prediction, weather forecast, and network resource optimization. Nowadays, due to the explosive increasing of positioning and sensor devices, big trajectory data are produced related to human movement. Using this big location-based trajectory data, researchers tend to predict human next location. Research efforts are spent on the put forward overall picture of next location prediction, and number of works has been done so as to realize robust next location prediction systems. However, in-depth study of those state-of-the-art works is required to know well the applications and challenges. Therefore, the aim of this paper is an extensive review on existing different next location prediction approaches. This work offers an extensive overview of location prediction enveloping basic definitions and concepts, data sources, approaches, and applications. In next location prediction, trajectory is represented by a sequence of timestamped geographical locations. It is challenging to analyze and mine trajectory data due to the complex characteristics reflected in human mobility, which is affected by multiple contextual information. Heterogeneous data generated from different sources, users’ random movement behavior, and the time sensitivity of trajectory data are some of the challenges. In this manuscript, we have discussed various location prediction approaches, applications, and challenges, and it sheds light on important points regarding future research directions. Furthermore, application and challenges are addressed related to the user’s next location prediction. Finally, we draw the overall conclusion of the survey, which is important for the development of robust next location prediction systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
贪玩小小发布了新的文献求助10
1秒前
燕小丙完成签到,获得积分10
1秒前
wzy完成签到,获得积分10
1秒前
小廖完成签到,获得积分10
1秒前
lllfff发布了新的文献求助10
1秒前
吱布吱布完成签到,获得积分20
1秒前
nnnaaaa完成签到,获得积分10
2秒前
李爱国应助认真白薇采纳,获得10
2秒前
sdnihbhew发布了新的文献求助10
2秒前
2秒前
3秒前
hjx发布了新的文献求助10
3秒前
3秒前
tommorw发布了新的文献求助10
3秒前
4秒前
wangqinlei完成签到 ,获得积分10
4秒前
zzmax发布了新的文献求助30
4秒前
科研通AI5应助想吃麻辣烫采纳,获得10
4秒前
5秒前
达达利亚发布了新的文献求助10
5秒前
oO完成签到 ,获得积分10
5秒前
空气伴我i发布了新的文献求助10
5秒前
猪猪hero应助huhdcid采纳,获得10
6秒前
6秒前
yyyyyxy完成签到,获得积分10
6秒前
6秒前
CXSCXD完成签到,获得积分10
6秒前
7秒前
高高白猫发布了新的文献求助10
7秒前
7秒前
AO完成签到,获得积分10
7秒前
OK了老科发布了新的文献求助10
7秒前
FashionBoy应助拼搏的金针菇采纳,获得10
7秒前
地学韦丰吉司长完成签到,获得积分10
7秒前
8秒前
研友_Zb1rln完成签到,获得积分10
8秒前
CipherSage应助呐喊也抒情采纳,获得10
8秒前
布丁完成签到,获得积分10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767694
求助须知:如何正确求助?哪些是违规求助? 3312340
关于积分的说明 10163291
捐赠科研通 3027644
什么是DOI,文献DOI怎么找? 1661614
邀请新用户注册赠送积分活动 794172
科研通“疑难数据库(出版商)”最低求助积分说明 756013