Prediction of daily global solar radiation and air temperature using six machine learning algorithms; a case of 27 European countries

气象学 算法 环境科学 空气温度 机器学习 人工智能 计算机科学 物理
作者
Modeste Kameni Nematchoua,José A. Orosa,Marwa Afaifia
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:69: 101643-101643 被引量:28
标识
DOI:10.1016/j.ecoinf.2022.101643
摘要

The prediction of global solar radiation in a region is of great importance as it provides investors and politicians with more detailed knowledge about the solar resource of that region, which can be very beneficial for largescale solar energy development.In this sense, the main objective of this study is to predict the daily global solar radiation data of 27 cities (Brussels, Paris, Lisbon, Madrid…), located in 27 countries, which have mostly different solar radiation distributions in Europe.In this research, six different machine-learning algorithms (Linear model (LM), Decision Tree (DT), Support Vector Machine (SVM), Deep Learning (DL), Random Forest (RF) and Gradient Boosted Trees (GBT)) are used.In the training of these algorithms, daily air temperature(Ta), wind speed(Va), relative humidity(RH) and solar radiation of these cities are used.The data is supplied from the Meteonorm tool and cover the last years grouped in two periods (1960-1990; 2000-2019).To decide on the success of these algorithms, four different statistical metrics (Average Relative Error (ARE), Average absolute Error (AAE), Root Mean Squared Error (RMSE), and R 2 (R-Squared)) are discussed in the study.In addition, the forecasting of air temperature and global solar radiation of these cities in 2050 and 2100 were made using three of the most recent Intergovernmental Panel on Climate Change (IPCC) scenarios (RCP2.6;RCP 4.5, and RCP 8.5).The results show that ARE, R, 2 and RMSE values of all algorithms are ranging from 0.114 to 6.321, from 0.382 to 0.985, from 0.145 to 2.126 MJ/m 2 , respectively.By analysing all the algorithms, it is noticed that the Decision tree exhibited the worst result in terms of R, 2 and RMSE metrics.Among the six prediction algorithms, the DL was recognized as the only algorithm that exceeded the t-critical value (The t-critical value is the cutoff between retaining or rejecting the null hypothesis).Globally, all the six machine learning algorithms used in this research can be applied to predict the daily global solar radiation data with good accuracy.Despite this, the SVM model is the best model among all the six models used.It is followed by the DL, LM, GB, RF and DT, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dachengzi完成签到,获得积分10
1秒前
巫雍完成签到,获得积分10
1秒前
伶俐紫发布了新的文献求助10
2秒前
3秒前
jiajiajia完成签到,获得积分20
3秒前
carcar完成签到,获得积分10
5秒前
llll发布了新的文献求助10
6秒前
6秒前
快乐完成签到,获得积分10
7秒前
9秒前
10秒前
大气的氧完成签到,获得积分10
10秒前
小余同学完成签到,获得积分10
10秒前
12秒前
大气的氧发布了新的文献求助10
13秒前
14秒前
可乐龙猫完成签到,获得积分10
14秒前
坚定的老六完成签到,获得积分10
14秒前
琉璃岁月发布了新的文献求助10
14秒前
Achilles发布了新的文献求助10
15秒前
15秒前
15秒前
失眠的芹关注了科研通微信公众号
16秒前
年年发布了新的文献求助10
16秒前
newsl发布了新的文献求助10
16秒前
haki完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
鲍里斯瓦格应助小宋采纳,获得10
18秒前
18秒前
18秒前
李爱国应助LiAlan采纳,获得10
18秒前
牧羊少年完成签到,获得积分10
19秒前
19秒前
20秒前
发发完成签到,获得积分10
21秒前
21秒前
lzq完成签到 ,获得积分10
21秒前
虚心的雁发布了新的文献求助10
21秒前
21秒前
小金今天自律了吗完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011574
求助须知:如何正确求助?哪些是违规求助? 3551304
关于积分的说明 11308331
捐赠科研通 3285566
什么是DOI,文献DOI怎么找? 1811101
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811638