亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrochemical activation enabling structure reconstruction of Fe-doped MnO2 for enhancing pseudocapacitive storage

纳米片 材料科学 电化学 超级电容器 纳米线 结晶度 兴奋剂 电极 电容 离域电子 纳米技术 离子 电子转移 化学工程 光电子学 复合材料 化学 物理化学 工程类 有机化学
作者
Shaobo Liu,Hao Huang,Chenggang Yang,Yufei Liu,Hongjian Li,Hui Xia,Ting Qin,Jianfei Zhou,Xiaoliang Liu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:441: 135967-135967 被引量:31
标识
DOI:10.1016/j.cej.2022.135967
摘要

Monitoring and understanding of materials reconstructed under working conditions are vital to accurately identify active sites, clarify reaction mechanism and reasonably design advanced electrodes. Here, a Fe doped MnO2 (Fe-MnO2) nanosheet with unique features is demonstrated, unfolding dynamic reconstruction on both morphology and defect structures toward self-optimized pseudocapacitive storage, which can be easily controlled by galvanostatic charge/discharge activation. The results show that the Fe-MnO2 after activation is reconstructed from nanosheets to a composite structure of Fe-doped and oxygen-deficient nanosheets and nanowires. This composite structure endows the reconstructed Fe-MnO2 with accelerated electron and ion transfers and high electrochemical active surface area. Density functional theory (DFT) calculation and finite element simulation reveal that the co-existence of Fe doping and oxygen defects arouses more delocalized charges, and the nanowires on nanosheets display tip-enhanced electric field effects for attracting more ions, which effectively improves electron and ion transfer kinetics. The reconstructed Fe-MnO2 delivers a specific capacitance of 500.1 F g−1 at 1 A g−1, a significant self-optimized energy storage compared with Fe-MnO2 with 379.2 F g−1. These observations demonstrate active morphology and crystallinity for outstanding pseudocapacitive storage of the Fe doped MnO2 electrode, offering a guidance to design the electrode materials with superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duanjun123完成签到,获得积分10
6秒前
Demi_Ming完成签到,获得积分10
6秒前
duanjun123发布了新的文献求助20
10秒前
量子星尘发布了新的文献求助10
33秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
54秒前
李健应助科研通管家采纳,获得10
54秒前
2分钟前
冷艳的灭龙完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
星际舟完成签到,获得积分10
3分钟前
比比谁的速度快给小幻的求助进行了留言
3分钟前
3分钟前
香蕉念薇发布了新的文献求助10
3分钟前
swayqur发布了新的文献求助30
3分钟前
所所应助卡卡采纳,获得10
4分钟前
wanjingwan完成签到 ,获得积分10
4分钟前
swayqur完成签到,获得积分10
4分钟前
学术小垃圾应助香蕉念薇采纳,获得10
4分钟前
4分钟前
fkdbdy发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI2S应助等待夏旋采纳,获得10
4分钟前
Hello应助跳跃采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
5分钟前
跳跃发布了新的文献求助10
5分钟前
典雅幻然发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015118
求助须知:如何正确求助?哪些是违规求助? 3555096
关于积分的说明 11317842
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983