亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence for the assessment of bowel preparation

医学 结肠镜检查 卷积神经网络 试验装置 泻药 集合(抽象数据类型) 计算机科学 人工智能 外科 内科学 癌症 程序设计语言 结直肠癌
作者
Ji Young Lee,Audrey H. Calderwood,William E. Karnes,James Requa,Brian C. Jacobson,Michael B. Wallace
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (3): 512-518.e1 被引量:36
标识
DOI:10.1016/j.gie.2021.11.041
摘要

A reliable assessment of bowel preparation is important to ensure high-quality colonoscopy. Current bowel preparation scoring systems are limited by interobserver variability. This study aimed to demonstrate objective assessment of bowel preparation adequacy using an artificial intelligence (AI)/convolutional neural network (CNN) algorithm developed from colonoscopy videos.Two CNNs were developed using a training set of 73,304 images from 200 colonoscopies. First, a binary CNN was developed and trained to distinguish video frames that were appropriate versus inappropriate for scoring with the Boston Bowel Preparation Scale (BBPS). A second multiclass CNN was developed and trained on 26,950 appropriate frames that were expertly annotated with BBPS segment scores (0-3). We validated the algorithm using 252 10-second video clips that were assigned BBPS segment scores by 2 experts. The algorithm provided mean BBPS scores based on the algorithm (AI-BBPS) by calculating mean BBPS based on each frame's scoring. We maximized the algorithm's performance by choosing a dichotomized AI-BBPS score that closely matched dichotomized BBPS scores (ie, adequate vs inadequate). We tested the mean BBPS score based on the algorithm AI-BBPS against human rating using 30 independent 10-second video clips (test set 1) and 10 full withdrawal colonoscopy videos (test set 2).In the validation set, the algorithm demonstrated an area under the curve of .918 and accuracy of 85.3% for detection of inadequate bowel cleanliness. In test set 1, sensitivity for inadequate bowel preparation was 100% and agreement between raters and AI was 76.7% to 83.3%. In test set 2, sensitivity for inadequate bowel preparation for each segment was 100% and agreement between raters and AI was 68.9% to 89.7%. Agreement between raters alone versus raters and AI were similar (κ = .694 and .649, respectively).The algorithm assessment of bowel cleanliness as measured with the BBPS showed good performance and agreement with experts including full withdrawal colonoscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
7秒前
Sotr完成签到,获得积分10
8秒前
lina发布了新的文献求助10
13秒前
boshi完成签到,获得积分10
14秒前
Sotr关注了科研通微信公众号
18秒前
lina完成签到,获得积分10
25秒前
39秒前
肾宝发布了新的文献求助10
44秒前
zqq完成签到,获得积分0
51秒前
52秒前
55秒前
wzq756发布了新的文献求助10
59秒前
小蘑菇应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
含糊的镜子完成签到 ,获得积分20
1分钟前
lovehuahua发布了新的文献求助10
1分钟前
空白格完成签到 ,获得积分10
1分钟前
1分钟前
北执完成签到,获得积分10
1分钟前
Yikao完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
12345发布了新的文献求助10
1分钟前
慕青应助lovehuahua采纳,获得10
1分钟前
Akim应助鹤唳采纳,获得10
2分钟前
2分钟前
鹤唳发布了新的文献求助10
2分钟前
2分钟前
鹤唳完成签到,获得积分10
2分钟前
Gideon完成签到,获得积分10
2分钟前
坦率的金针菇完成签到 ,获得积分10
2分钟前
2分钟前
眯眯眼的雪莲完成签到 ,获得积分10
2分钟前
kendall完成签到 ,获得积分10
2分钟前
仰勒完成签到 ,获得积分10
2分钟前
季禹发布了新的文献求助10
3分钟前
freyaaaaa应助科研通管家采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498268
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449353
捐赠科研通 4528276
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465573
关于科研通互助平台的介绍 1438310