Artificial intelligence for the assessment of bowel preparation

医学 结肠镜检查 卷积神经网络 试验装置 泻药 集合(抽象数据类型) 计算机科学 人工智能 外科 内科学 癌症 程序设计语言 结直肠癌
作者
Ji Young Lee,Audrey H. Calderwood,William E. Karnes,James Requa,Brian C. Jacobson,Michael B. Wallace
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (3): 512-518.e1 被引量:36
标识
DOI:10.1016/j.gie.2021.11.041
摘要

A reliable assessment of bowel preparation is important to ensure high-quality colonoscopy. Current bowel preparation scoring systems are limited by interobserver variability. This study aimed to demonstrate objective assessment of bowel preparation adequacy using an artificial intelligence (AI)/convolutional neural network (CNN) algorithm developed from colonoscopy videos.Two CNNs were developed using a training set of 73,304 images from 200 colonoscopies. First, a binary CNN was developed and trained to distinguish video frames that were appropriate versus inappropriate for scoring with the Boston Bowel Preparation Scale (BBPS). A second multiclass CNN was developed and trained on 26,950 appropriate frames that were expertly annotated with BBPS segment scores (0-3). We validated the algorithm using 252 10-second video clips that were assigned BBPS segment scores by 2 experts. The algorithm provided mean BBPS scores based on the algorithm (AI-BBPS) by calculating mean BBPS based on each frame's scoring. We maximized the algorithm's performance by choosing a dichotomized AI-BBPS score that closely matched dichotomized BBPS scores (ie, adequate vs inadequate). We tested the mean BBPS score based on the algorithm AI-BBPS against human rating using 30 independent 10-second video clips (test set 1) and 10 full withdrawal colonoscopy videos (test set 2).In the validation set, the algorithm demonstrated an area under the curve of .918 and accuracy of 85.3% for detection of inadequate bowel cleanliness. In test set 1, sensitivity for inadequate bowel preparation was 100% and agreement between raters and AI was 76.7% to 83.3%. In test set 2, sensitivity for inadequate bowel preparation for each segment was 100% and agreement between raters and AI was 68.9% to 89.7%. Agreement between raters alone versus raters and AI were similar (κ = .694 and .649, respectively).The algorithm assessment of bowel cleanliness as measured with the BBPS showed good performance and agreement with experts including full withdrawal colonoscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyh发布了新的文献求助10
1秒前
1秒前
mouxq发布了新的文献求助10
1秒前
2秒前
科研通AI6应助嘻嘻采纳,获得10
2秒前
LiM完成签到,获得积分10
2秒前
希望天下0贩的0应助kkr采纳,获得10
2秒前
2秒前
3秒前
晓月发布了新的文献求助10
3秒前
无花果应助迪迦采纳,获得10
4秒前
4秒前
4秒前
Susie完成签到,获得积分10
4秒前
5秒前
5秒前
开心颜完成签到,获得积分10
5秒前
orixero应助夕未息采纳,获得10
5秒前
光亮的太阳完成签到,获得积分10
5秒前
王敏娜完成签到 ,获得积分10
5秒前
灯灯发布了新的文献求助10
5秒前
asstman完成签到,获得积分10
5秒前
6秒前
李健应助冷泡泡采纳,获得10
6秒前
6秒前
微生完成签到,获得积分10
6秒前
6秒前
LJHUA完成签到,获得积分10
6秒前
乐乐完成签到,获得积分10
6秒前
华仔应助1223采纳,获得20
7秒前
8秒前
8秒前
李晓彤完成签到,获得积分10
8秒前
平淡丹寒完成签到,获得积分20
8秒前
科目三应助kbc采纳,获得10
8秒前
song完成签到 ,获得积分10
8秒前
长情洙完成签到,获得积分10
8秒前
微生发布了新的文献求助10
9秒前
小蘑菇应助辛勤面包采纳,获得10
9秒前
mulberry发布了新的文献求助200
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285