Artificial intelligence for the assessment of bowel preparation

医学 结肠镜检查 卷积神经网络 试验装置 泻药 集合(抽象数据类型) 计算机科学 人工智能 外科 内科学 癌症 程序设计语言 结直肠癌
作者
Ji Young Lee,Audrey H. Calderwood,William E. Karnes,James Requa,Brian C. Jacobson,Michael B. Wallace
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (3): 512-518.e1 被引量:18
标识
DOI:10.1016/j.gie.2021.11.041
摘要

A reliable assessment of bowel preparation is important to ensure high-quality colonoscopy. Current bowel preparation scoring systems are limited by interobserver variability. This study aimed to demonstrate objective assessment of bowel preparation adequacy using an artificial intelligence (AI)/convolutional neural network (CNN) algorithm developed from colonoscopy videos.Two CNNs were developed using a training set of 73,304 images from 200 colonoscopies. First, a binary CNN was developed and trained to distinguish video frames that were appropriate versus inappropriate for scoring with the Boston Bowel Preparation Scale (BBPS). A second multiclass CNN was developed and trained on 26,950 appropriate frames that were expertly annotated with BBPS segment scores (0-3). We validated the algorithm using 252 10-second video clips that were assigned BBPS segment scores by 2 experts. The algorithm provided mean BBPS scores based on the algorithm (AI-BBPS) by calculating mean BBPS based on each frame's scoring. We maximized the algorithm's performance by choosing a dichotomized AI-BBPS score that closely matched dichotomized BBPS scores (ie, adequate vs inadequate). We tested the mean BBPS score based on the algorithm AI-BBPS against human rating using 30 independent 10-second video clips (test set 1) and 10 full withdrawal colonoscopy videos (test set 2).In the validation set, the algorithm demonstrated an area under the curve of .918 and accuracy of 85.3% for detection of inadequate bowel cleanliness. In test set 1, sensitivity for inadequate bowel preparation was 100% and agreement between raters and AI was 76.7% to 83.3%. In test set 2, sensitivity for inadequate bowel preparation for each segment was 100% and agreement between raters and AI was 68.9% to 89.7%. Agreement between raters alone versus raters and AI were similar (κ = .694 and .649, respectively).The algorithm assessment of bowel cleanliness as measured with the BBPS showed good performance and agreement with experts including full withdrawal colonoscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuhang完成签到,获得积分10
刚刚
design完成签到,获得积分10
1秒前
tleeny完成签到,获得积分10
1秒前
墨蓝完成签到,获得积分10
1秒前
zqq发布了新的文献求助10
1秒前
qiluo123完成签到,获得积分10
2秒前
Mister_CHEN完成签到,获得积分10
2秒前
ayingjiang完成签到,获得积分10
3秒前
4秒前
森木木完成签到,获得积分10
4秒前
5秒前
丽江阿镇完成签到,获得积分10
5秒前
7秒前
7秒前
lili完成签到,获得积分10
7秒前
龙口夺食关注了科研通微信公众号
7秒前
8秒前
Shell完成签到,获得积分10
8秒前
9秒前
roselin26完成签到,获得积分10
9秒前
小熊完成签到,获得积分10
9秒前
10秒前
asd完成签到,获得积分10
10秒前
10秒前
明明发布了新的文献求助10
10秒前
hashtag完成签到,获得积分10
10秒前
123完成签到 ,获得积分10
11秒前
Colorc发布了新的文献求助10
11秒前
天行完成签到,获得积分10
11秒前
K珑发布了新的文献求助10
12秒前
12秒前
粗犷的沛容应助lam采纳,获得10
13秒前
糖糖爱干饭完成签到 ,获得积分10
13秒前
xiangwang完成签到 ,获得积分10
13秒前
狂野含巧完成签到 ,获得积分10
14秒前
苏源智完成签到 ,获得积分10
14秒前
故意的问安完成签到,获得积分10
14秒前
Isaacwg168完成签到,获得积分10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835