亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence for the assessment of bowel preparation

医学 结肠镜检查 卷积神经网络 试验装置 泻药 集合(抽象数据类型) 计算机科学 人工智能 外科 内科学 结直肠癌 癌症 程序设计语言
作者
Ji Young Lee,Audrey H. Calderwood,William E. Karnes,James Requa,Brian C. Jacobson,Michael B. Wallace
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:95 (3): 512-518.e1 被引量:36
标识
DOI:10.1016/j.gie.2021.11.041
摘要

A reliable assessment of bowel preparation is important to ensure high-quality colonoscopy. Current bowel preparation scoring systems are limited by interobserver variability. This study aimed to demonstrate objective assessment of bowel preparation adequacy using an artificial intelligence (AI)/convolutional neural network (CNN) algorithm developed from colonoscopy videos.Two CNNs were developed using a training set of 73,304 images from 200 colonoscopies. First, a binary CNN was developed and trained to distinguish video frames that were appropriate versus inappropriate for scoring with the Boston Bowel Preparation Scale (BBPS). A second multiclass CNN was developed and trained on 26,950 appropriate frames that were expertly annotated with BBPS segment scores (0-3). We validated the algorithm using 252 10-second video clips that were assigned BBPS segment scores by 2 experts. The algorithm provided mean BBPS scores based on the algorithm (AI-BBPS) by calculating mean BBPS based on each frame's scoring. We maximized the algorithm's performance by choosing a dichotomized AI-BBPS score that closely matched dichotomized BBPS scores (ie, adequate vs inadequate). We tested the mean BBPS score based on the algorithm AI-BBPS against human rating using 30 independent 10-second video clips (test set 1) and 10 full withdrawal colonoscopy videos (test set 2).In the validation set, the algorithm demonstrated an area under the curve of .918 and accuracy of 85.3% for detection of inadequate bowel cleanliness. In test set 1, sensitivity for inadequate bowel preparation was 100% and agreement between raters and AI was 76.7% to 83.3%. In test set 2, sensitivity for inadequate bowel preparation for each segment was 100% and agreement between raters and AI was 68.9% to 89.7%. Agreement between raters alone versus raters and AI were similar (κ = .694 and .649, respectively).The algorithm assessment of bowel cleanliness as measured with the BBPS showed good performance and agreement with experts including full withdrawal colonoscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高源伯完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得40
51秒前
2分钟前
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
清爽的大树完成签到,获得积分10
3分钟前
HYQ完成签到 ,获得积分10
3分钟前
3分钟前
yy发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
e麓绝尘完成签到 ,获得积分10
4分钟前
科研通AI5应助xiaxia采纳,获得10
4分钟前
4分钟前
4分钟前
jiacheng发布了新的文献求助10
4分钟前
三块石头发布了新的文献求助10
4分钟前
一只商路神完成签到 ,获得积分10
4分钟前
三块石头完成签到,获得积分10
4分钟前
科研通AI5应助yy采纳,获得10
5分钟前
Becky完成签到 ,获得积分10
5分钟前
5分钟前
xiaxia发布了新的文献求助10
5分钟前
5分钟前
ymt发布了新的文献求助10
5分钟前
jessicaw完成签到,获得积分0
5分钟前
5分钟前
传奇3应助ymt采纳,获得10
6分钟前
ymt完成签到,获得积分10
6分钟前
苗小天发布了新的文献求助10
6分钟前
苗小天完成签到,获得积分10
6分钟前
xiaxia完成签到,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
今后应助Lss采纳,获得10
6分钟前
Qimier完成签到 ,获得积分10
7分钟前
高伟杰完成签到,获得积分10
7分钟前
jiacheng完成签到,获得积分10
7分钟前
8分钟前
孙泉发布了新的文献求助10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910068
求助须知:如何正确求助?哪些是违规求助? 4186069
关于积分的说明 12999011
捐赠科研通 3953339
什么是DOI,文献DOI怎么找? 2167876
邀请新用户注册赠送积分活动 1186328
关于科研通互助平台的介绍 1093381