Artificial intelligence for the assessment of bowel preparation

医学 结肠镜检查 卷积神经网络 试验装置 泻药 集合(抽象数据类型) 计算机科学 人工智能 外科 内科学 结直肠癌 癌症 程序设计语言
作者
Ji Young Lee,Audrey H. Calderwood,William E. Karnes,James Requa,Brian C. Jacobson,Michael B. Wallace
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:95 (3): 512-518.e1 被引量:36
标识
DOI:10.1016/j.gie.2021.11.041
摘要

A reliable assessment of bowel preparation is important to ensure high-quality colonoscopy. Current bowel preparation scoring systems are limited by interobserver variability. This study aimed to demonstrate objective assessment of bowel preparation adequacy using an artificial intelligence (AI)/convolutional neural network (CNN) algorithm developed from colonoscopy videos.Two CNNs were developed using a training set of 73,304 images from 200 colonoscopies. First, a binary CNN was developed and trained to distinguish video frames that were appropriate versus inappropriate for scoring with the Boston Bowel Preparation Scale (BBPS). A second multiclass CNN was developed and trained on 26,950 appropriate frames that were expertly annotated with BBPS segment scores (0-3). We validated the algorithm using 252 10-second video clips that were assigned BBPS segment scores by 2 experts. The algorithm provided mean BBPS scores based on the algorithm (AI-BBPS) by calculating mean BBPS based on each frame's scoring. We maximized the algorithm's performance by choosing a dichotomized AI-BBPS score that closely matched dichotomized BBPS scores (ie, adequate vs inadequate). We tested the mean BBPS score based on the algorithm AI-BBPS against human rating using 30 independent 10-second video clips (test set 1) and 10 full withdrawal colonoscopy videos (test set 2).In the validation set, the algorithm demonstrated an area under the curve of .918 and accuracy of 85.3% for detection of inadequate bowel cleanliness. In test set 1, sensitivity for inadequate bowel preparation was 100% and agreement between raters and AI was 76.7% to 83.3%. In test set 2, sensitivity for inadequate bowel preparation for each segment was 100% and agreement between raters and AI was 68.9% to 89.7%. Agreement between raters alone versus raters and AI were similar (κ = .694 and .649, respectively).The algorithm assessment of bowel cleanliness as measured with the BBPS showed good performance and agreement with experts including full withdrawal colonoscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
U9A关闭了U9A文献求助
1秒前
wy发布了新的文献求助10
2秒前
wym发布了新的文献求助30
4秒前
传奇3应助风中的爆米花采纳,获得10
5秒前
5秒前
CipherSage应助菜菜泽采纳,获得10
6秒前
阿洋完成签到,获得积分20
6秒前
阿洋发布了新的文献求助10
10秒前
上官可可发布了新的文献求助10
10秒前
wy完成签到,获得积分10
10秒前
duyitao关注了科研通微信公众号
11秒前
12秒前
Frank完成签到,获得积分10
12秒前
guard发布了新的文献求助10
12秒前
U9A发布了新的文献求助10
13秒前
14秒前
hh完成签到,获得积分10
15秒前
hony完成签到,获得积分10
16秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得20
18秒前
ED应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
Ricey应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
henxiangai应助科研通管家采纳,获得30
18秒前
李健应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
ED应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712