医学
结肠镜检查
卷积神经网络
试验装置
泻药
集合(抽象数据类型)
计算机科学
人工智能
外科
内科学
癌症
程序设计语言
结直肠癌
作者
Ji Young Lee,Audrey H. Calderwood,William E. Karnes,James Requa,Brian C. Jacobson,Michael B. Wallace
标识
DOI:10.1016/j.gie.2021.11.041
摘要
A reliable assessment of bowel preparation is important to ensure high-quality colonoscopy. Current bowel preparation scoring systems are limited by interobserver variability. This study aimed to demonstrate objective assessment of bowel preparation adequacy using an artificial intelligence (AI)/convolutional neural network (CNN) algorithm developed from colonoscopy videos.Two CNNs were developed using a training set of 73,304 images from 200 colonoscopies. First, a binary CNN was developed and trained to distinguish video frames that were appropriate versus inappropriate for scoring with the Boston Bowel Preparation Scale (BBPS). A second multiclass CNN was developed and trained on 26,950 appropriate frames that were expertly annotated with BBPS segment scores (0-3). We validated the algorithm using 252 10-second video clips that were assigned BBPS segment scores by 2 experts. The algorithm provided mean BBPS scores based on the algorithm (AI-BBPS) by calculating mean BBPS based on each frame's scoring. We maximized the algorithm's performance by choosing a dichotomized AI-BBPS score that closely matched dichotomized BBPS scores (ie, adequate vs inadequate). We tested the mean BBPS score based on the algorithm AI-BBPS against human rating using 30 independent 10-second video clips (test set 1) and 10 full withdrawal colonoscopy videos (test set 2).In the validation set, the algorithm demonstrated an area under the curve of .918 and accuracy of 85.3% for detection of inadequate bowel cleanliness. In test set 1, sensitivity for inadequate bowel preparation was 100% and agreement between raters and AI was 76.7% to 83.3%. In test set 2, sensitivity for inadequate bowel preparation for each segment was 100% and agreement between raters and AI was 68.9% to 89.7%. Agreement between raters alone versus raters and AI were similar (κ = .694 and .649, respectively).The algorithm assessment of bowel cleanliness as measured with the BBPS showed good performance and agreement with experts including full withdrawal colonoscopies.
科研通智能强力驱动
Strongly Powered by AbleSci AI