Integrated Portable Shrimp-Freshness Prediction Platform Based on Ice-Templated Metal–Organic Framework Colorimetric Combinatorics and Deep Convolutional Neural Networks

卷积神经网络 小虾 计算机科学 深度学习 三甲胺 化学 人工智能 纳米技术 材料科学 生态学 生物化学 生物
作者
Peihua Ma,Zhi Zhang,Wenhao Xu,Zi Teng,Yaguang Luo,Cheng Gong,Qin Wang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:9 (50): 16926-16936 被引量:44
标识
DOI:10.1021/acssuschemeng.1c04704
摘要

Real-time monitoring of food freshness is critical to reducing food waste and pursuing sustainable development. Cross-reactive artificial scent screening systems provide a promising solution for food freshness monitoring, but their commercialization is hindered by the low sensitivity or pattern-recognition inaccuracy. Leveraging the cutting-edge artificial intelligence and high-porosity nanomaterial, a cost-effective and versatile method was developed by incorporating metal–organic frameworks into smart food packaging via a colorimetric combinatorics sensor array. The whole UiO-66 family was screened by density functional theory calculations, and UiO-66-Br (due to the highest binding energy) was selected to construct sensor arrays on an ice-templated chitosan substrate (i.e., ice-templated dye@UiO-66-Br/Chitosan). The physicochemical properties and morphologies of the fabricated sensor arrays were systematically characterized. The limit of detection of 37.17, 25.90, and 40.65 ppm for ammonia, methylamine, and trimethylamine, respectively, was achieved by the prepared composite film. Deep convolutional neural networks (DCNN), a deep learning algorithm family, were further applied to monitor shrimp freshness by recognizing the scent fingerprint. Four state-of-the-art DCNN models were trained using 31,584 labeled images and 13,537 images for testing. The highest accuracy achieved was up to 99.94% by the Wide-Slice Residual Network 50 (WISeR50). Our newly developed platform is integrated, sensitive, and non-destructive, enabling consumers to monitor shrimp freshness in real-time conveniently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pplynl应助Chatgpt采纳,获得200
1秒前
1秒前
lihua完成签到 ,获得积分10
1秒前
2秒前
幻梦完成签到,获得积分10
3秒前
4秒前
12334完成签到,获得积分10
4秒前
順意完成签到,获得积分10
5秒前
浮游应助漂亮的抽屉采纳,获得10
5秒前
Ava应助璐璐采纳,获得20
5秒前
6秒前
Sepvvvvirtue完成签到 ,获得积分10
7秒前
yjn完成签到,获得积分10
7秒前
森森完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
见微完成签到,获得积分10
9秒前
Ally发布了新的文献求助10
9秒前
10秒前
褚蕴发布了新的文献求助10
10秒前
木鱼发布了新的文献求助10
11秒前
11秒前
12秒前
yuchen完成签到,获得积分10
13秒前
搜集达人应助yar采纳,获得10
13秒前
zh123完成签到,获得积分10
13秒前
qiqi77ya发布了新的文献求助30
14秒前
heth完成签到,获得积分10
14秒前
10完成签到,获得积分10
14秒前
astar927发布了新的文献求助10
15秒前
16秒前
EVEN完成签到 ,获得积分10
16秒前
心灵美的元枫完成签到,获得积分10
16秒前
16秒前
17秒前
l2385865294发布了新的文献求助10
18秒前
zzz发布了新的文献求助10
18秒前
刘泗青应助六步郎采纳,获得10
19秒前
sora98完成签到 ,获得积分10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213094
求助须知:如何正确求助?哪些是违规求助? 4389011
关于积分的说明 13665698
捐赠科研通 4249994
什么是DOI,文献DOI怎么找? 2331851
邀请新用户注册赠送积分活动 1329542
关于科研通互助平台的介绍 1283086