亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated Portable Shrimp-Freshness Prediction Platform Based on Ice-Templated Metal–Organic Framework Colorimetric Combinatorics and Deep Convolutional Neural Networks

卷积神经网络 小虾 计算机科学 深度学习 三甲胺 化学 人工智能 纳米技术 材料科学 生态学 生物化学 生物
作者
Peihua Ma,Zhi Zhang,Wenhao Xu,Zi Teng,Yaguang Luo,Cheng Gong,Qin Wang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:9 (50): 16926-16936 被引量:44
标识
DOI:10.1021/acssuschemeng.1c04704
摘要

Real-time monitoring of food freshness is critical to reducing food waste and pursuing sustainable development. Cross-reactive artificial scent screening systems provide a promising solution for food freshness monitoring, but their commercialization is hindered by the low sensitivity or pattern-recognition inaccuracy. Leveraging the cutting-edge artificial intelligence and high-porosity nanomaterial, a cost-effective and versatile method was developed by incorporating metal–organic frameworks into smart food packaging via a colorimetric combinatorics sensor array. The whole UiO-66 family was screened by density functional theory calculations, and UiO-66-Br (due to the highest binding energy) was selected to construct sensor arrays on an ice-templated chitosan substrate (i.e., ice-templated dye@UiO-66-Br/Chitosan). The physicochemical properties and morphologies of the fabricated sensor arrays were systematically characterized. The limit of detection of 37.17, 25.90, and 40.65 ppm for ammonia, methylamine, and trimethylamine, respectively, was achieved by the prepared composite film. Deep convolutional neural networks (DCNN), a deep learning algorithm family, were further applied to monitor shrimp freshness by recognizing the scent fingerprint. Four state-of-the-art DCNN models were trained using 31,584 labeled images and 13,537 images for testing. The highest accuracy achieved was up to 99.94% by the Wide-Slice Residual Network 50 (WISeR50). Our newly developed platform is integrated, sensitive, and non-destructive, enabling consumers to monitor shrimp freshness in real-time conveniently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qlsweep发布了新的文献求助10
8秒前
10秒前
13秒前
16秒前
19秒前
思源应助qlsweep采纳,获得100
20秒前
陳.发布了新的文献求助10
24秒前
西红柿有饭吃吗完成签到,获得积分10
24秒前
彭浩完成签到,获得积分10
31秒前
37秒前
LLLucen完成签到 ,获得积分10
38秒前
38秒前
39秒前
shhoing应助科研通管家采纳,获得10
41秒前
星辰大海应助科研通管家采纳,获得10
42秒前
Yuanyuan发布了新的文献求助10
44秒前
44秒前
husi发布了新的文献求助10
48秒前
充电宝应助清脆靳采纳,获得10
48秒前
Jasper应助gaijiaofanv采纳,获得10
49秒前
iDong完成签到 ,获得积分10
55秒前
1分钟前
果小镁发布了新的文献求助10
1分钟前
Robot完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
清脆靳发布了新的文献求助10
1分钟前
gaijiaofanv发布了新的文献求助10
1分钟前
青柳雅春发布了新的文献求助10
1分钟前
GU完成签到,获得积分10
1分钟前
kk_1315完成签到,获得积分0
1分钟前
1分钟前
食指发布了新的文献求助10
1分钟前
蘑蘑菇菇完成签到,获得积分10
1分钟前
Jack完成签到 ,获得积分10
1分钟前
1分钟前
CCC发布了新的文献求助10
1分钟前
吴彦祖完成签到,获得积分10
1分钟前
洞两发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561238
求助须知:如何正确求助?哪些是违规求助? 4646374
关于积分的说明 14678419
捐赠科研通 4587681
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490462
关于科研通互助平台的介绍 1461344