Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials

偶氮苯 微型多孔材料 材料科学 多孔性 纳米技术 多孔介质 吸附 化学工程 分子 聚合物 化学 有机化学 复合材料 工程类
作者
Hannah F. Drake,Gregory S. Day,Zhifeng Xiao,Hong‐Cai Zhou,Matthew R. Ryder
出处
期刊:Trends in chemistry [Elsevier]
卷期号:4 (1): 32-47 被引量:22
标识
DOI:10.1016/j.trechm.2021.11.003
摘要

Porous materials for gas storage and separations have had limited success in reaching working capacity goals because of fundamental limitations in how the gas is adsorbed within the microporous structures. Light-induced photoirradiation has distinct advantages over many other stimulus approaches, including being non-destructive, having high spatial and periodic resolution, and generating a more accurate and predictable response over the desired pressure range. The main strategies for light-induced switchable adsorption (LISA) are through the incorporation of photoresponsive molecules as guests (type 1), pendant groups (type 2), and backbones (type 3). Despite the relative infancy of the application of LISA to targeted gas storage and separations, preliminary research has shown promising advances, and we expect a diverse array of discoveries to be forthcoming in the next few years. Despite the long history of porous materials as adsorbates, fundamental limitations remain regarding the efficient capture and release of the gas molecules, with the working capacity of the material often overlooked. In microporous materials, the uptake is dominated by low-pressure adsorption, with much of this being at pressures below the minimum working threshold for many gas utilization processes. Thus, research has focused on several advances in porous materials, including photoresponsive organic units for light-induced switchable adsorption. This process utilizes light to trigger structural or electronic changes, alter the gas uptake, and change the working capacity. While a relatively recent development, there is a significant body of research regarding the use of light to control gas storage performance. Despite the long history of porous materials as adsorbates, fundamental limitations remain regarding the efficient capture and release of the gas molecules, with the working capacity of the material often overlooked. In microporous materials, the uptake is dominated by low-pressure adsorption, with much of this being at pressures below the minimum working threshold for many gas utilization processes. Thus, research has focused on several advances in porous materials, including photoresponsive organic units for light-induced switchable adsorption. This process utilizes light to trigger structural or electronic changes, alter the gas uptake, and change the working capacity. While a relatively recent development, there is a significant body of research regarding the use of light to control gas storage performance. two phenyl rings joined by two nitrogen atoms in an N–N double bond. The phenyl rings can also be functionalized with other functional groups. crystalline porous materials synthesized through covalent bonding of organic monomers, sometimes referred to as crystalline PPNs. electronic energy transfer from a ligand to a metal. a light-induced response that can result in switchable gas adsorption properties of a material. The reaction is often immediately reversible with the presence or absence of a photo trigger. a light-induced switchable catalytic state. crystalline porous materials comprising organic and inorganic components synthesized from ionic or coordination bonds. electronic energy transfer from a metal center to a ligand. also called MOPs; highly ordered porous materials maintaining their pore structures in solution. They are made from metal clusters and organic linkers like MOFs but are typically single pore units in size. thin films of porous materials constructed from polymers. These can have multiple phases or layers and can be made into composite materials with PCCs/MOPs, MOFs, or PPNs. also called POPs; non-crystalline porous materials synthesized from organic building blocks into a polymer matrix. two phenyl rings joined by two carbon atoms in a bridging C–C double bond. Also called the carbon analog of azobenzene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CipherSage应助小鹿5460采纳,获得10
刚刚
情怀应助另一种感觉采纳,获得10
刚刚
简单平蓝发布了新的文献求助10
1秒前
复杂含灵发布了新的文献求助10
1秒前
bkagyin应助panda采纳,获得10
1秒前
2秒前
小猫来啦完成签到,获得积分10
2秒前
自由笙应助敬老院N号采纳,获得10
2秒前
2秒前
chengzi完成签到,获得积分10
2秒前
3秒前
qin希望应助科研通管家采纳,获得10
4秒前
小二郎应助YMAO采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
IceyCNZ应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
jianglin6完成签到,获得积分20
4秒前
苏卿应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研进化中完成签到,获得积分10
5秒前
IceyCNZ应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
杆杆完成签到,获得积分10
5秒前
5秒前
5秒前
闪闪芷波完成签到,获得积分10
5秒前
嗷嗷发布了新的文献求助10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280