An improved binocular localization method for apple based on fruit detection using deep learning

人工智能 计算机视觉 计算机科学 特征(语言学) 深度学习 像素 模式识别(心理学) 语言学 哲学
作者
Tengfei Li,Wentai Fang,Guanao Zhao,Fangfang Gao,Zhenchao Wu,Rui Li,Longsheng Fu,Jaspreet Dhupia
出处
期刊:Information Processing in Agriculture [Elsevier BV]
卷期号:10 (2): 276-287 被引量:23
标识
DOI:10.1016/j.inpa.2021.12.003
摘要

Apple picking robot is now being developed as an alternative to hand picking due to a great demand for labor during apple harvest season. Accurate detection and localization of target fruit is necessary for robotic apple picking. Detection accuracy has a great influence on localization results. Although current researches on detection and localization of apples using traditional image algorithms can obtain good results under laboratory conditions, it is difficult to accurately detect and locate objects in natural field with complex environments. With the rapid development of artificial intelligence, accuracy of apple detection based on deep learning has been significantly improved. Therefore, a deep learning-based method was developed to accurately detect and locate the position of fruit. For different localization methods, binocular localization is a widely used localization method for its bionic principle and lower equipment cost. Hence, this paper proposed an improved binocular localization method for apple based on fruit detection using deep learning. First, apples of binocular images were detected by Faster R-CNN. After that, a segmentation based on chromatic aberration and chromatic aberration ratio was applied to segment apple and background pixels in bounding box of detected fruit. Furthermore, template matching with parallel polar line constraint was used to match apples in left and right images. Finally, two feature points on apples were selected to directly calculate three dimensional coordinates of feature points with the binocular localization principle. In this study, Faster R-CNN achieved an AP of 88.12% with an average detection speed of 0.32 s for an image. Meanwhile, standard deviation and localization precision of depth of two feature points on each apple were calculated to evaluate localization. Results showed that the average standard deviation and the average localization precision of 76 groups of datasets were 0.51 cm and 99.64%, respectively. Results indicated that the proposed improved binocular localization method is promising for fruit localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到,获得积分10
2秒前
就是躺完成签到 ,获得积分10
4秒前
6秒前
金桔希子完成签到,获得积分10
7秒前
taoxz521完成签到 ,获得积分10
7秒前
高级后勤完成签到,获得积分10
7秒前
Amon完成签到 ,获得积分10
8秒前
Liziqi823完成签到,获得积分10
8秒前
Silence完成签到,获得积分0
10秒前
无味完成签到,获得积分10
10秒前
香蕉觅云应助akihi采纳,获得10
10秒前
开心祯祯完成签到,获得积分10
10秒前
Deerlu完成签到,获得积分10
11秒前
秦时明月完成签到,获得积分10
14秒前
LXx完成签到 ,获得积分10
14秒前
深情千雁完成签到,获得积分10
15秒前
巴山郎完成签到,获得积分10
15秒前
guo完成签到 ,获得积分10
15秒前
大模型应助洁净斑马采纳,获得10
17秒前
dorothy_meng完成签到,获得积分10
17秒前
所所应助拼搏的小鱼采纳,获得10
19秒前
略略略完成签到 ,获得积分10
20秒前
21秒前
虚幻元风完成签到 ,获得积分10
21秒前
哦吼完成签到,获得积分20
21秒前
研友_LkD29n完成签到 ,获得积分10
21秒前
无语的断缘完成签到,获得积分10
22秒前
森森完成签到,获得积分10
23秒前
23秒前
哦吼发布了新的文献求助10
25秒前
旺仔完成签到,获得积分10
25秒前
Brian完成签到,获得积分10
26秒前
27秒前
斯文败类应助huyz采纳,获得10
27秒前
28秒前
笨笨凡松完成签到 ,获得积分10
28秒前
既然寄了,那就开摆完成签到 ,获得积分10
29秒前
高大绝义完成签到,获得积分10
29秒前
洁净斑马发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027