亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved binocular localization method for apple based on fruit detection using deep learning

人工智能 计算机视觉 计算机科学 特征(语言学) 深度学习 像素 模式识别(心理学) 语言学 哲学
作者
Tengfei Li,Wentai Fang,Guanao Zhao,Fangfang Gao,Zhenchao Wu,Rui Li,Longsheng Fu,Jaspreet Dhupia
出处
期刊:Information Processing in Agriculture [Elsevier BV]
卷期号:10 (2): 276-287 被引量:23
标识
DOI:10.1016/j.inpa.2021.12.003
摘要

Apple picking robot is now being developed as an alternative to hand picking due to a great demand for labor during apple harvest season. Accurate detection and localization of target fruit is necessary for robotic apple picking. Detection accuracy has a great influence on localization results. Although current researches on detection and localization of apples using traditional image algorithms can obtain good results under laboratory conditions, it is difficult to accurately detect and locate objects in natural field with complex environments. With the rapid development of artificial intelligence, accuracy of apple detection based on deep learning has been significantly improved. Therefore, a deep learning-based method was developed to accurately detect and locate the position of fruit. For different localization methods, binocular localization is a widely used localization method for its bionic principle and lower equipment cost. Hence, this paper proposed an improved binocular localization method for apple based on fruit detection using deep learning. First, apples of binocular images were detected by Faster R-CNN. After that, a segmentation based on chromatic aberration and chromatic aberration ratio was applied to segment apple and background pixels in bounding box of detected fruit. Furthermore, template matching with parallel polar line constraint was used to match apples in left and right images. Finally, two feature points on apples were selected to directly calculate three dimensional coordinates of feature points with the binocular localization principle. In this study, Faster R-CNN achieved an AP of 88.12% with an average detection speed of 0.32 s for an image. Meanwhile, standard deviation and localization precision of depth of two feature points on each apple were calculated to evaluate localization. Results showed that the average standard deviation and the average localization precision of 76 groups of datasets were 0.51 cm and 99.64%, respectively. Results indicated that the proposed improved binocular localization method is promising for fruit localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
量子星尘发布了新的文献求助20
14秒前
1分钟前
QCB完成签到 ,获得积分10
1分钟前
1分钟前
Vino发布了新的文献求助10
1分钟前
Vino完成签到,获得积分10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
2分钟前
Cherie77完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
穆振家完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
Axs完成签到,获得积分10
4分钟前
Kevin完成签到,获得积分10
4分钟前
4分钟前
羞涩的傲菡完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助50
4分钟前
5分钟前
5分钟前
闲逛的木头2完成签到,获得积分20
5分钟前
捉迷藏完成签到,获得积分0
5分钟前
馆长应助科研通管家采纳,获得10
6分钟前
迅速的岩完成签到,获得积分10
6分钟前
HYQ完成签到 ,获得积分10
7分钟前
7分钟前
嘻嘻完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
ding应助科研通管家采纳,获得10
8分钟前
徐凤年完成签到,获得积分10
8分钟前
沐雨微寒完成签到,获得积分10
8分钟前
9分钟前
9分钟前
欣慰外套完成签到 ,获得积分10
9分钟前
yindi1991完成签到 ,获得积分10
9分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
美满的小蘑菇完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596127
求助须知:如何正确求助?哪些是违规求助? 4008212
关于积分的说明 12408971
捐赠科研通 3687127
什么是DOI,文献DOI怎么找? 2032233
邀请新用户注册赠送积分活动 1065470
科研通“疑难数据库(出版商)”最低求助积分说明 950783