已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved binocular localization method for apple based on fruit detection using deep learning

人工智能 计算机视觉 计算机科学 特征(语言学) 深度学习 像素 模式识别(心理学) 语言学 哲学
作者
Tengfei Li,Wentai Fang,Guanao Zhao,Fangfang Gao,Zhenchao Wu,Rui Li,Longsheng Fu,Jaspreet Dhupia
出处
期刊:Information Processing in Agriculture [Elsevier]
卷期号:10 (2): 276-287 被引量:23
标识
DOI:10.1016/j.inpa.2021.12.003
摘要

Apple picking robot is now being developed as an alternative to hand picking due to a great demand for labor during apple harvest season. Accurate detection and localization of target fruit is necessary for robotic apple picking. Detection accuracy has a great influence on localization results. Although current researches on detection and localization of apples using traditional image algorithms can obtain good results under laboratory conditions, it is difficult to accurately detect and locate objects in natural field with complex environments. With the rapid development of artificial intelligence, accuracy of apple detection based on deep learning has been significantly improved. Therefore, a deep learning-based method was developed to accurately detect and locate the position of fruit. For different localization methods, binocular localization is a widely used localization method for its bionic principle and lower equipment cost. Hence, this paper proposed an improved binocular localization method for apple based on fruit detection using deep learning. First, apples of binocular images were detected by Faster R-CNN. After that, a segmentation based on chromatic aberration and chromatic aberration ratio was applied to segment apple and background pixels in bounding box of detected fruit. Furthermore, template matching with parallel polar line constraint was used to match apples in left and right images. Finally, two feature points on apples were selected to directly calculate three dimensional coordinates of feature points with the binocular localization principle. In this study, Faster R-CNN achieved an AP of 88.12% with an average detection speed of 0.32 s for an image. Meanwhile, standard deviation and localization precision of depth of two feature points on each apple were calculated to evaluate localization. Results showed that the average standard deviation and the average localization precision of 76 groups of datasets were 0.51 cm and 99.64%, respectively. Results indicated that the proposed improved binocular localization method is promising for fruit localization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的盼夏完成签到 ,获得积分10
2秒前
Augusterny完成签到 ,获得积分10
4秒前
欧皇完成签到,获得积分20
7秒前
Zilch完成签到 ,获得积分10
10秒前
Rainbow完成签到 ,获得积分10
12秒前
时尚问安完成签到 ,获得积分10
14秒前
14秒前
llk完成签到 ,获得积分10
15秒前
机灵剑通发布了新的文献求助10
15秒前
充电宝应助贝湾采纳,获得10
16秒前
ding应助贝湾采纳,获得10
16秒前
Akim应助贝湾采纳,获得10
16秒前
穆紫应助科研通管家采纳,获得10
16秒前
三月月完成签到 ,获得积分10
16秒前
liian7发布了新的文献求助200
19秒前
我爱学习完成签到 ,获得积分10
20秒前
账户已注销应助科研王者采纳,获得30
21秒前
22秒前
zeroy完成签到,获得积分10
24秒前
小玲完成签到,获得积分20
24秒前
26秒前
Seldomyg完成签到 ,获得积分10
27秒前
生动的豪英完成签到 ,获得积分10
27秒前
李秋静完成签到,获得积分10
27秒前
29秒前
边港洋完成签到 ,获得积分10
29秒前
洛神完成签到 ,获得积分10
29秒前
mmmm完成签到,获得积分10
30秒前
李李完成签到,获得积分10
30秒前
CipherSage应助wangsenyu采纳,获得10
30秒前
deng完成签到 ,获得积分10
31秒前
至乐无乐发布了新的文献求助10
31秒前
韦老虎完成签到,获得积分10
33秒前
斯文败类应助短岛采纳,获得10
35秒前
37秒前
陌路完成签到 ,获得积分10
40秒前
xyyyy完成签到 ,获得积分10
41秒前
儿学化学打断腿完成签到,获得积分10
43秒前
至乐无乐完成签到,获得积分10
43秒前
好好响一响完成签到,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133798
求助须知:如何正确求助?哪些是违规求助? 2784777
关于积分的说明 7768435
捐赠科研通 2440073
什么是DOI,文献DOI怎么找? 1297175
科研通“疑难数据库(出版商)”最低求助积分说明 624888
版权声明 600791