磷
过渡金属
化学
金属
材料科学
无机化学
计算化学
有机化学
催化作用
作者
Yuling Yin,Vladislav Gladkikh,Pai Li,Leining Zhang,Qinghong Yuan,Feng Ding
标识
DOI:10.1021/acs.chemmater.1c03489
摘要
Great efforts have been dedicated to synthesizing phosphorene on transition metal surfaces, but there has been limited success until now. The strong interaction between phosphorus and the substrate may lead to many possible highly stable isomers of phosphorus, making the synthesis of phosphorene difficult. Here, we studied whether functionalizing transition metal surfaces by different phosphorous isomers can assist the epitaxial growth of blue phosphorene. Using density functional theory, we systematically explored five families of phosphorous isomers, blue phosphorene, modified blue phosphorene, surface phosphide, metal-phosphorus hybrid, and blue phosphorene on surface phosphide, on six different transition metal surfaces, Ag(111), Au(111), Cu(111), Co(0001), Ni(111), and Pt(111). It is found that blue phosphorene can be formed on less active transition metal surfaces, such as Ag(111) and Au(111), if the flux of phosphorus is sufficiently high. On more active transition metal surfaces, surface phosphides tend to form first and blue phosphorene may be formed on top of the surface phosphide. This study highlights the structural diversity of the transition metal surfaces in an active environment and provides guidance for the synthesis of phosphorene on transition metal surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI