Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol

碳酸二甲酯 酯交换 萃取蒸馏 甲醇 化学 蒸馏 有机化学 共沸物 废物管理 工程类
作者
Yuanyuan Shen,Zihao Su,Qing Zhao,Rongli Shan,Zhaoyou Zhu,Peizhe Cui,Yinglong Wang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:158: 181-188 被引量:13
标识
DOI:10.1016/j.psep.2021.11.055
摘要

Dimethyl carbonate, an important green solvent, has garnered substantial attention in recent years. The routes for dimethyl carbonate synthesis include transesterification, alcoholation of urea by methanol, and oxidative carbonylation of alcohols. The transesterification process accounts for the largest proportion of dimethyl carbonate synthesis because it affords a high conversion rate of the raw materials, easy separation of the products, and is the most mature process. The azeotrope of dimethyl carbonate and methanol in the top of the columns used for preparing dimethyl carbonate by transesterification needs to be further separated. Herein, the optimal ionic liquid ([BMIM] [OTF]) for the separation of dimethyl carbonate and methanol via extractive distillation was determined by applying a molecular dynamics simulation algorithm and utilized in the separation process. As an efficient and green energy-saving process, pervaporation-assisted extractive distillation was further evaluated for the separation of dimethyl carbonate and methanol. The results showed that the pervaporation-assisted extractive distillation process offers economic benefits and has less environmental impact, and its total annual cost is 17.28% lower than that of the common extractive distillation process. Environmental analysis showed that carbon dioxide emissions, sulfur dioxide emissions, and nitric oxide emissions were reduced by 49.09% with this process. Therefore, this research has important guiding significance for the realization of the high-efficiency, energy-saving, and green separation of dimethyl carbonate and methanol in industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh完成签到 ,获得积分10
2秒前
红红的红红完成签到,获得积分10
4秒前
6秒前
隐形曼青应助sunidea采纳,获得10
9秒前
嘉子完成签到,获得积分10
14秒前
lacan发布了新的文献求助10
14秒前
魁梧的路灯完成签到 ,获得积分10
17秒前
一一应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
不配.应助科研通管家采纳,获得40
18秒前
18秒前
一一应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
18秒前
葡萄成熟应助科研通管家采纳,获得10
18秒前
19秒前
所所应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
20秒前
念之完成签到 ,获得积分10
20秒前
shade66666发布了新的文献求助10
22秒前
23秒前
23秒前
汉堡包应助葡萄成熟时采纳,获得10
23秒前
科研通AI2S应助lacan采纳,获得10
23秒前
汐汐发布了新的文献求助20
23秒前
lxw完成签到,获得积分10
23秒前
威武的皮卡丘完成签到,获得积分10
24秒前
烟花应助轻松冰旋采纳,获得10
24秒前
25秒前
huokai发布了新的文献求助30
26秒前
27秒前
27秒前
zzmmlll发布了新的文献求助10
27秒前
冷艳的姿发布了新的文献求助10
27秒前
我是老大应助坚强的骁采纳,获得10
27秒前
30秒前
32秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136127
求助须知:如何正确求助?哪些是违规求助? 2787029
关于积分的说明 7780244
捐赠科研通 2443154
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870