Performance of an Artificial Intelligence-based Application for the Detection of Plaque-based Stenosis on Monoenergetic Coronary CT Angiography: Validation by Invasive Coronary Angiography

医学 狭窄 血管造影 预测值 冠状动脉疾病 放射科 冠状动脉 冠状动脉造影 动脉 核医学 心脏病学 内科学 心肌梗塞
作者
Yan Yi,Cheng Xu,Ning Guo,Jianqing Sun,Xiaomei Lü,Shenghui Yu,Yun Wang,Mani Vembar,Zhengyu Jin,Yining Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29: S49-S58 被引量:11
标识
DOI:10.1016/j.acra.2021.10.027
摘要

To explore the value of an artificial intelligence (AI)-based application for identifying plaque-specific stenosis and obstructive coronary artery disease from monoenergetic spectral reconstructions on coronary computed tomography angiography (CTA).This retrospective study enrolled 71 consecutive patients (52 men, 19 women; 63.3 ± 10.7 years) who underwent coronary CTA and invasive coronary angiography for diagnosing coronary artery disease. The conventional 120 kVp images and eight different virtual monoenergetic images (VMIs) (from 40 keV to 140 keV at increment of 10 keV) were reconstructed. An AI system automatically detected plaques from the conventional 120 kVp images and VMIs and calculated the degree of stenosis, which was further compared to invasive coronary angiography. The assessment was performed at a segment, vessel, and patient level.Vessel and segment-based analyses showed comparable diagnostic performance between conventional CTA images and VMIs from 50 keV to 90 keV. For vessel-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of conventional CTA were 74.3% (95% CI: 64.9%-82.0%), 85.6% (95% CI: 77.0%-91.4%), 84.3% (95% CI: 75.2%-90.7%), 76.1% (95% CI: 67.1%-83.3%) and 79.8% (95% CI: 73.7%-84.9%), respectively; the average sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy values of the VMIs ranging from 50 keV to 90 keV were 71.6%, 90.7%, 87.5%, 64.1% and 81.6%, respectively. For plaque-based assessment, diagnostic performance of the average VMIs ranging from 50 keV to 100 keV showed no significant statistical difference in diagnostic accuracy compared to those of conventional CTA images in detecting calcified (91.4% vs. 93.8%, p > 0.05), noncalcified (92.6% vs. 85.2%, p > 0.05) or mixed (80.2% vs. 81.2%, p > 0.05) stenosis, although the specificity was slightly higher (53.4% vs. 40.0%, p > 0.05) in detecting stenosis caused by mixed plaques. For VMIs above 100 keV, the diagnostic accuracy dropped significantly.Our study showed that the performance of an AI-based application employed to detect significant coronary stenosis in virtual monoenergetic reconstructions ranging from 50 keV to 90 keV was comparable to conventional 120 kVp reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
cytheria发布了新的文献求助10
2秒前
时间的过客完成签到,获得积分10
2秒前
HesperLxy发布了新的文献求助10
2秒前
SciGPT应助天天玩采纳,获得10
4秒前
4秒前
NexusExplorer应助cc采纳,获得10
4秒前
李爱国应助千尺焰采纳,获得10
5秒前
666发布了新的文献求助10
6秒前
美好斓发布了新的文献求助10
6秒前
6秒前
zzz发布了新的文献求助30
8秒前
文献小白发布了新的文献求助10
8秒前
xxx发布了新的文献求助30
8秒前
666完成签到,获得积分10
8秒前
Jasper应助cc采纳,获得10
9秒前
思源应助hahaha采纳,获得10
10秒前
嘻嘻发布了新的文献求助20
10秒前
10秒前
10秒前
Aurora发布了新的文献求助10
11秒前
angel完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
NexusExplorer应助ercha采纳,获得10
13秒前
cytheria完成签到,获得积分10
13秒前
14秒前
14秒前
小杭76应助九漏鱼采纳,获得10
14秒前
15秒前
JXDYYZK发布了新的文献求助10
15秒前
15秒前
16秒前
天天玩发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961