Performance of an Artificial Intelligence-based Application for the Detection of Plaque-based Stenosis on Monoenergetic Coronary CT Angiography: Validation by Invasive Coronary Angiography

医学 狭窄 血管造影 预测值 冠状动脉疾病 放射科 冠状动脉 冠状动脉造影 动脉 核医学 心脏病学 内科学 心肌梗塞
作者
Yan Yi,Cheng Xu,Ning Guo,Jianqing Sun,Xiaomei Lü,Shenghui Yu,Yun Wang,Mani Vembar,Zhengyu Jin,Yining Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S49-S58 被引量:11
标识
DOI:10.1016/j.acra.2021.10.027
摘要

To explore the value of an artificial intelligence (AI)-based application for identifying plaque-specific stenosis and obstructive coronary artery disease from monoenergetic spectral reconstructions on coronary computed tomography angiography (CTA).This retrospective study enrolled 71 consecutive patients (52 men, 19 women; 63.3 ± 10.7 years) who underwent coronary CTA and invasive coronary angiography for diagnosing coronary artery disease. The conventional 120 kVp images and eight different virtual monoenergetic images (VMIs) (from 40 keV to 140 keV at increment of 10 keV) were reconstructed. An AI system automatically detected plaques from the conventional 120 kVp images and VMIs and calculated the degree of stenosis, which was further compared to invasive coronary angiography. The assessment was performed at a segment, vessel, and patient level.Vessel and segment-based analyses showed comparable diagnostic performance between conventional CTA images and VMIs from 50 keV to 90 keV. For vessel-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of conventional CTA were 74.3% (95% CI: 64.9%-82.0%), 85.6% (95% CI: 77.0%-91.4%), 84.3% (95% CI: 75.2%-90.7%), 76.1% (95% CI: 67.1%-83.3%) and 79.8% (95% CI: 73.7%-84.9%), respectively; the average sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy values of the VMIs ranging from 50 keV to 90 keV were 71.6%, 90.7%, 87.5%, 64.1% and 81.6%, respectively. For plaque-based assessment, diagnostic performance of the average VMIs ranging from 50 keV to 100 keV showed no significant statistical difference in diagnostic accuracy compared to those of conventional CTA images in detecting calcified (91.4% vs. 93.8%, p > 0.05), noncalcified (92.6% vs. 85.2%, p > 0.05) or mixed (80.2% vs. 81.2%, p > 0.05) stenosis, although the specificity was slightly higher (53.4% vs. 40.0%, p > 0.05) in detecting stenosis caused by mixed plaques. For VMIs above 100 keV, the diagnostic accuracy dropped significantly.Our study showed that the performance of an AI-based application employed to detect significant coronary stenosis in virtual monoenergetic reconstructions ranging from 50 keV to 90 keV was comparable to conventional 120 kVp reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
英姑应助222采纳,获得30
2秒前
陈明甫发布了新的文献求助10
2秒前
安静店员完成签到,获得积分10
3秒前
今银完成签到,获得积分20
3秒前
3秒前
霜风款冬发布了新的文献求助10
3秒前
Pises发布了新的文献求助10
4秒前
5秒前
苇一完成签到,获得积分10
5秒前
搜集达人应助小小采纳,获得10
5秒前
lengkuboy发布了新的文献求助10
8秒前
浮浮世世发布了新的文献求助10
8秒前
慕青应助菜虚鲲采纳,获得10
8秒前
Hello应助迪丽盐巴采纳,获得10
8秒前
打打应助111采纳,获得10
10秒前
Orange应助王晓文采纳,获得10
12秒前
二指弹完成签到 ,获得积分10
13秒前
13秒前
赵文龙发布了新的文献求助10
13秒前
14秒前
李健的小迷弟应助陈明甫采纳,获得10
14秒前
14秒前
15秒前
Fishchips发布了新的文献求助10
16秒前
机智幻嫣完成签到,获得积分10
16秒前
wanci应助成婷采纳,获得10
17秒前
汉堡包应助欧贤书采纳,获得10
17秒前
17秒前
222发布了新的文献求助30
19秒前
张参发布了新的文献求助10
19秒前
19秒前
TAO完成签到,获得积分10
19秒前
ding应助二郎显圣真菌采纳,获得10
19秒前
yolanda完成签到,获得积分10
20秒前
小杭76应助聪明元蝶采纳,获得10
20秒前
迪丽盐巴发布了新的文献求助10
21秒前
21秒前
puuuunido应助霜风款冬采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309857
求助须知:如何正确求助?哪些是违规求助? 4454301
关于积分的说明 13859732
捐赠科研通 4342290
什么是DOI,文献DOI怎么找? 2384425
邀请新用户注册赠送积分活动 1378884
关于科研通互助平台的介绍 1347126