Performance of an Artificial Intelligence-based Application for the Detection of Plaque-based Stenosis on Monoenergetic Coronary CT Angiography: Validation by Invasive Coronary Angiography

医学 狭窄 血管造影 预测值 冠状动脉疾病 放射科 冠状动脉 冠状动脉造影 动脉 核医学 心脏病学 内科学 心肌梗塞
作者
Yan Yi,Cheng Xu,Ning Guo,Jianqing Sun,Xiaomei Lü,Shenghui Yu,Yun Wang,Mani Vembar,Zhengyu Jin,Yining Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29: S49-S58 被引量:10
标识
DOI:10.1016/j.acra.2021.10.027
摘要

To explore the value of an artificial intelligence (AI)-based application for identifying plaque-specific stenosis and obstructive coronary artery disease from monoenergetic spectral reconstructions on coronary computed tomography angiography (CTA).This retrospective study enrolled 71 consecutive patients (52 men, 19 women; 63.3 ± 10.7 years) who underwent coronary CTA and invasive coronary angiography for diagnosing coronary artery disease. The conventional 120 kVp images and eight different virtual monoenergetic images (VMIs) (from 40 keV to 140 keV at increment of 10 keV) were reconstructed. An AI system automatically detected plaques from the conventional 120 kVp images and VMIs and calculated the degree of stenosis, which was further compared to invasive coronary angiography. The assessment was performed at a segment, vessel, and patient level.Vessel and segment-based analyses showed comparable diagnostic performance between conventional CTA images and VMIs from 50 keV to 90 keV. For vessel-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of conventional CTA were 74.3% (95% CI: 64.9%-82.0%), 85.6% (95% CI: 77.0%-91.4%), 84.3% (95% CI: 75.2%-90.7%), 76.1% (95% CI: 67.1%-83.3%) and 79.8% (95% CI: 73.7%-84.9%), respectively; the average sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy values of the VMIs ranging from 50 keV to 90 keV were 71.6%, 90.7%, 87.5%, 64.1% and 81.6%, respectively. For plaque-based assessment, diagnostic performance of the average VMIs ranging from 50 keV to 100 keV showed no significant statistical difference in diagnostic accuracy compared to those of conventional CTA images in detecting calcified (91.4% vs. 93.8%, p > 0.05), noncalcified (92.6% vs. 85.2%, p > 0.05) or mixed (80.2% vs. 81.2%, p > 0.05) stenosis, although the specificity was slightly higher (53.4% vs. 40.0%, p > 0.05) in detecting stenosis caused by mixed plaques. For VMIs above 100 keV, the diagnostic accuracy dropped significantly.Our study showed that the performance of an AI-based application employed to detect significant coronary stenosis in virtual monoenergetic reconstructions ranging from 50 keV to 90 keV was comparable to conventional 120 kVp reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jstagey发布了新的文献求助10
1秒前
善学以致用应助戚薇采纳,获得10
1秒前
低语yaa发布了新的文献求助10
1秒前
清脆愫完成签到 ,获得积分0
1秒前
jinyu完成签到,获得积分10
1秒前
NATURECATCHER完成签到,获得积分10
2秒前
Ainhoa发布了新的文献求助10
3秒前
LLY完成签到,获得积分20
3秒前
小罗在无锡完成签到 ,获得积分10
3秒前
zwy109发布了新的文献求助10
3秒前
机灵紫萱完成签到,获得积分10
3秒前
酷波er应助後知後孓采纳,获得10
4秒前
可爱的函函应助受伤丹妗采纳,获得10
4秒前
4秒前
敏敏发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
丘比特应助wsgdhz采纳,获得10
7秒前
Hoyshin应助Sui采纳,获得20
8秒前
kangnakangna发布了新的文献求助20
8秒前
共享精神应助芋泥桃桃采纳,获得10
8秒前
支盼夏完成签到,获得积分10
8秒前
科目三应助jstagey采纳,获得10
9秒前
科研通AI5应助徐昊雯采纳,获得10
9秒前
wz发布了新的文献求助10
9秒前
dxp完成签到,获得积分10
9秒前
ln发布了新的文献求助10
10秒前
李健应助合适板栗采纳,获得10
10秒前
10秒前
平淡的雁开应助JUAN采纳,获得10
11秒前
11秒前
11秒前
Hello应助魏不不采纳,获得10
12秒前
後知後孓完成签到,获得积分10
13秒前
14秒前
14秒前
周维发布了新的文献求助10
14秒前
15秒前
想毕业完成签到,获得积分10
15秒前
後知後孓发布了新的文献求助10
16秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709