Performance of an Artificial Intelligence-based Application for the Detection of Plaque-based Stenosis on Monoenergetic Coronary CT Angiography: Validation by Invasive Coronary Angiography

医学 狭窄 血管造影 预测值 冠状动脉疾病 放射科 冠状动脉 冠状动脉造影 动脉 核医学 心脏病学 内科学 心肌梗塞
作者
Yan Yi,Cheng Xu,Ning Guo,Jianqing Sun,Xiaomei Lü,Shenghui Yu,Yun Wang,Mani Vembar,Zhengyu Jin,Yining Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S49-S58 被引量:10
标识
DOI:10.1016/j.acra.2021.10.027
摘要

To explore the value of an artificial intelligence (AI)-based application for identifying plaque-specific stenosis and obstructive coronary artery disease from monoenergetic spectral reconstructions on coronary computed tomography angiography (CTA).This retrospective study enrolled 71 consecutive patients (52 men, 19 women; 63.3 ± 10.7 years) who underwent coronary CTA and invasive coronary angiography for diagnosing coronary artery disease. The conventional 120 kVp images and eight different virtual monoenergetic images (VMIs) (from 40 keV to 140 keV at increment of 10 keV) were reconstructed. An AI system automatically detected plaques from the conventional 120 kVp images and VMIs and calculated the degree of stenosis, which was further compared to invasive coronary angiography. The assessment was performed at a segment, vessel, and patient level.Vessel and segment-based analyses showed comparable diagnostic performance between conventional CTA images and VMIs from 50 keV to 90 keV. For vessel-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of conventional CTA were 74.3% (95% CI: 64.9%-82.0%), 85.6% (95% CI: 77.0%-91.4%), 84.3% (95% CI: 75.2%-90.7%), 76.1% (95% CI: 67.1%-83.3%) and 79.8% (95% CI: 73.7%-84.9%), respectively; the average sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy values of the VMIs ranging from 50 keV to 90 keV were 71.6%, 90.7%, 87.5%, 64.1% and 81.6%, respectively. For plaque-based assessment, diagnostic performance of the average VMIs ranging from 50 keV to 100 keV showed no significant statistical difference in diagnostic accuracy compared to those of conventional CTA images in detecting calcified (91.4% vs. 93.8%, p > 0.05), noncalcified (92.6% vs. 85.2%, p > 0.05) or mixed (80.2% vs. 81.2%, p > 0.05) stenosis, although the specificity was slightly higher (53.4% vs. 40.0%, p > 0.05) in detecting stenosis caused by mixed plaques. For VMIs above 100 keV, the diagnostic accuracy dropped significantly.Our study showed that the performance of an AI-based application employed to detect significant coronary stenosis in virtual monoenergetic reconstructions ranging from 50 keV to 90 keV was comparable to conventional 120 kVp reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyh发布了新的文献求助10
2秒前
爹爹发布了新的文献求助10
2秒前
vcfvc完成签到,获得积分10
2秒前
Yyang完成签到,获得积分10
2秒前
3秒前
沈佳琪完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
隐形曼青应助小文cremen采纳,获得10
6秒前
lily发布了新的文献求助10
7秒前
神途发布了新的文献求助10
7秒前
英俊的铭应助晊恦采纳,获得10
8秒前
9秒前
苹果雁易发布了新的文献求助10
9秒前
万能图书馆应助扣子采纳,获得10
9秒前
sjhz完成签到,获得积分10
10秒前
11秒前
左先森发布了新的文献求助10
11秒前
可以的发布了新的文献求助10
12秒前
科研通AI2S应助爹爹采纳,获得10
13秒前
Animagus发布了新的文献求助10
14秒前
orange发布了新的文献求助10
14秒前
14秒前
传奇3应助babao采纳,获得10
14秒前
suzhhn完成签到,获得积分10
15秒前
15秒前
自觉的凡梦完成签到 ,获得积分10
16秒前
Cattiovo关注了科研通微信公众号
17秒前
孤檠应助shubiao采纳,获得10
17秒前
周ZHOU发布了新的文献求助10
18秒前
18秒前
Mint发布了新的文献求助10
19秒前
21秒前
晊恦发布了新的文献求助10
22秒前
quhayley应助zlzlzte采纳,获得10
24秒前
25秒前
26秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149396
求助须知:如何正确求助?哪些是违规求助? 2800463
关于积分的说明 7840190
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308223
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706