Performance of an Artificial Intelligence-based Application for the Detection of Plaque-based Stenosis on Monoenergetic Coronary CT Angiography: Validation by Invasive Coronary Angiography

医学 狭窄 血管造影 预测值 冠状动脉疾病 放射科 冠状动脉 冠状动脉造影 动脉 核医学 心脏病学 内科学 心肌梗塞
作者
Yan Yi,Cheng Xu,Ning Guo,Jianqing Sun,Xiaomei Lü,Shenghui Yu,Yun Wang,Mani Vembar,Zhengyu Jin,Yining Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29: S49-S58 被引量:11
标识
DOI:10.1016/j.acra.2021.10.027
摘要

To explore the value of an artificial intelligence (AI)-based application for identifying plaque-specific stenosis and obstructive coronary artery disease from monoenergetic spectral reconstructions on coronary computed tomography angiography (CTA).This retrospective study enrolled 71 consecutive patients (52 men, 19 women; 63.3 ± 10.7 years) who underwent coronary CTA and invasive coronary angiography for diagnosing coronary artery disease. The conventional 120 kVp images and eight different virtual monoenergetic images (VMIs) (from 40 keV to 140 keV at increment of 10 keV) were reconstructed. An AI system automatically detected plaques from the conventional 120 kVp images and VMIs and calculated the degree of stenosis, which was further compared to invasive coronary angiography. The assessment was performed at a segment, vessel, and patient level.Vessel and segment-based analyses showed comparable diagnostic performance between conventional CTA images and VMIs from 50 keV to 90 keV. For vessel-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of conventional CTA were 74.3% (95% CI: 64.9%-82.0%), 85.6% (95% CI: 77.0%-91.4%), 84.3% (95% CI: 75.2%-90.7%), 76.1% (95% CI: 67.1%-83.3%) and 79.8% (95% CI: 73.7%-84.9%), respectively; the average sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy values of the VMIs ranging from 50 keV to 90 keV were 71.6%, 90.7%, 87.5%, 64.1% and 81.6%, respectively. For plaque-based assessment, diagnostic performance of the average VMIs ranging from 50 keV to 100 keV showed no significant statistical difference in diagnostic accuracy compared to those of conventional CTA images in detecting calcified (91.4% vs. 93.8%, p > 0.05), noncalcified (92.6% vs. 85.2%, p > 0.05) or mixed (80.2% vs. 81.2%, p > 0.05) stenosis, although the specificity was slightly higher (53.4% vs. 40.0%, p > 0.05) in detecting stenosis caused by mixed plaques. For VMIs above 100 keV, the diagnostic accuracy dropped significantly.Our study showed that the performance of an AI-based application employed to detect significant coronary stenosis in virtual monoenergetic reconstructions ranging from 50 keV to 90 keV was comparable to conventional 120 kVp reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
znq051210发布了新的文献求助10
1秒前
3秒前
4秒前
大模型应助高贵宛海采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
核桃应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得200
6秒前
6秒前
天然应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
今后应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
DijiaXu应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
leaolf应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
江南烟雨如笙完成签到 ,获得积分10
7秒前
林途发布了新的文献求助10
8秒前
Wink完成签到 ,获得积分10
8秒前
9秒前
kaede完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
科研通AI5应助deng采纳,获得10
13秒前
自由的小土豆完成签到,获得积分10
13秒前
西瓜发布了新的文献求助30
16秒前
Owen应助allenise采纳,获得10
16秒前
漱石枕流完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131087
求助须知:如何正确求助?哪些是违规求助? 4333112
关于积分的说明 13499238
捐赠科研通 4169825
什么是DOI,文献DOI怎么找? 2285943
邀请新用户注册赠送积分活动 1286868
关于科研通互助平台的介绍 1227780