Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon

吸光度 偏最小二乘回归 近红外光谱 融合 传感器融合 化学计量学 串联(数学) 生物系统 化学 人工智能 模式识别(心理学) 计算机科学 遥感 数学 光学 机器学习 物理 色谱法 地质学 哲学 组合数学 生物 语言学
作者
Yongsheng Hong,Muhammad Abdul Munnaf,Angela Guerrero,Songchao Chen,Yaolin Liu,Zhou Shi,Abdul M. Mouazen
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:217: 105284-105284 被引量:30
标识
DOI:10.1016/j.still.2021.105284
摘要

Spectral techniques such as visible-to-near-infrared (VIS–NIR) and mid-infrared (MIR) spectroscopies have been regarded as effective alternatives to laboratory-based methods for determining soil organic carbon (SOC). Research to explore the potential of the fusion of VIS–NIR and MIR absorbance for improving SOC prediction is needed, since each individual spectral range may not contain sufficient information to yield reasonable estimation accuracy. Here, we investigated two data fusion strategies that differed in input data, including direct concatenation of full-spectral absorbance and concatenation of selected predictors by optimal band combination (OBC) algorithm. Specifically, continuous wavelet transform (CWT) was adopted to optimize the spectral data before and after data fusion. Prediction models for SOC were developed using partial least squares regression. Results demonstrated that estimations for SOC using MIR absorbance (i.e., validation R2 = 0.45–0.64) generally outperformed those using VIS–NIR (i.e., validation R2 = 0.20–0.44). Compared to the raw absorbance counterparts, CWT decomposing could improve the prediction accuracy for SOC, for both the individual absorbance and the fusion of VIS–NIR and MIR absorbance. Among all the models investigated, the combinational use of VIS–NIR and MIR using OBC fusion at CWT scale of 1 yielded the optimal prediction, providing the highest validation R2 of 0.66. This model with 10 selected spectral parameters as input is of small total data volume, large processing speed and efficiency, confirming the potential of OBC in fusing both types of spectral data. In summary, CWT decomposing and OBC strategy are powerful algorithms in analyzing the spectral data, and allow the VIS–NIR and MIR spectral fusion models to improve the SOC estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨橙完成签到,获得积分10
刚刚
onemore关注了科研通微信公众号
1秒前
1秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得200
2秒前
SYLH应助科研通管家采纳,获得30
2秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得30
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
瘦瘦依白应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得30
4秒前
坦率的匪应助科研通管家采纳,获得20
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
执念完成签到,获得积分10
4秒前
4秒前
yar应助科研通管家采纳,获得10
4秒前
李爱国应助Gheros采纳,获得10
5秒前
在水一方应助1234采纳,获得10
5秒前
背后的桐发布了新的文献求助10
5秒前
在水一方应助Sylvia0528采纳,获得10
5秒前
完美世界应助舒适的店员采纳,获得10
5秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635