MRI Texture Analysis for Preoperative Prediction of Lymph Node Metastasis in Patients with Nonsquamous Cell Cervical Carcinoma

医学 磁共振成像 放射科 组内相关 核医学 临床心理学 心理测量学
作者
Mei Xiao,Wei Yan,Jing Zhang,Junming Jian,Yang Song,Zi Jing Lin,Lan Qian,Guofu Zhang,Jinwei Qiang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (11): 1661-1671 被引量:9
标识
DOI:10.1016/j.acra.2022.01.005
摘要

•The predictive factors of lymph node metastasis (LNM) in adenocarcinoma components are different from those in squamous cell cervical carcinoma (SCC). •The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models showed good discrimination ability in predicting LNM in patients with cervical non-SCC. •The T2WI+DWI-based, T2WI+DWI+CE-T1WI-based and T2WI+DWI+LNS-MRI-based models performed better than positive LN morphological criteria on MRI and yielded similar discrimination abilities in predicting LNM in patients with cervical non-SCC. Rationale and Objectives To preoperatively predict lymph node metastasis (LNM) in patients with cervical nonsquamous cell carcinoma (non-SCC) based on magnetic resonance imaging (MRI) texture analysis. Materials and Methods This retrospective study included 104 consecutive patients (mean age of 47.2 ± 11.3 years) with stage IB–IIA cervical non-SCC. According to the ratio of 7:3, 72, and 32 patients were randomly divided into the training and testing cohorts. A total of 272 original features were extracted. In the process of feature selection, features with intraclass correlation coefficients (ICCs) less than 0.8 were eliminated. The Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) were applied to reduce redundancy, overfitting, and selection biases. Further, a support vector machine (SVM) with linear kernel function was applied to select the optimal feature set with a high discrimination power. Results The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI (LN status on MRI)-based SVM models yielded an AUC and accuracy of 0.78 and 0.79; 0.79 and 0.69; 0.79 and 0.81 for predicting LNM in the training cohort, and 0.82 and 0.78; 0.82 and 0.69; 0.79 and 0.72 in the testing cohort. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models performed better than morphologic criteria of LNS-MRI and yield similar discrimination abilities in predicting LNM in the training and testing cohorts (all p-value > 0.05). In addition, the T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the AC and ASC subgroups (all p-value > 0.05). Conclusion The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI+DWI+LNS-MRI-based SVM models showed similar good discrimination ability and performed better than the morphologic criteria of LNS-MRI in predicting LNM in patients with cervical non-SCC. The inclusion of the CE-T1WI sequence and morphologic criteria of LNS-MRI did not significantly improve the performance of the T2WI + DWI-based model. The T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the subgroup analysis. To preoperatively predict lymph node metastasis (LNM) in patients with cervical nonsquamous cell carcinoma (non-SCC) based on magnetic resonance imaging (MRI) texture analysis. This retrospective study included 104 consecutive patients (mean age of 47.2 ± 11.3 years) with stage IB–IIA cervical non-SCC. According to the ratio of 7:3, 72, and 32 patients were randomly divided into the training and testing cohorts. A total of 272 original features were extracted. In the process of feature selection, features with intraclass correlation coefficients (ICCs) less than 0.8 were eliminated. The Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) were applied to reduce redundancy, overfitting, and selection biases. Further, a support vector machine (SVM) with linear kernel function was applied to select the optimal feature set with a high discrimination power. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI (LN status on MRI)-based SVM models yielded an AUC and accuracy of 0.78 and 0.79; 0.79 and 0.69; 0.79 and 0.81 for predicting LNM in the training cohort, and 0.82 and 0.78; 0.82 and 0.69; 0.79 and 0.72 in the testing cohort. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models performed better than morphologic criteria of LNS-MRI and yield similar discrimination abilities in predicting LNM in the training and testing cohorts (all p-value > 0.05). In addition, the T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the AC and ASC subgroups (all p-value > 0.05). The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI+DWI+LNS-MRI-based SVM models showed similar good discrimination ability and performed better than the morphologic criteria of LNS-MRI in predicting LNM in patients with cervical non-SCC. The inclusion of the CE-T1WI sequence and morphologic criteria of LNS-MRI did not significantly improve the performance of the T2WI + DWI-based model. The T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the subgroup analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱的不二完成签到,获得积分10
2秒前
李大胖胖完成签到 ,获得积分10
5秒前
搜集达人应助股价采纳,获得10
6秒前
稻子完成签到 ,获得积分10
8秒前
aniu完成签到,获得积分10
12秒前
卓垚完成签到,获得积分10
14秒前
加贝完成签到 ,获得积分10
17秒前
ypres完成签到 ,获得积分10
19秒前
韩医生口腔完成签到 ,获得积分10
28秒前
Everything完成签到,获得积分10
32秒前
11完成签到 ,获得积分10
35秒前
Lynn完成签到 ,获得积分10
35秒前
lql完成签到 ,获得积分10
39秒前
又又完成签到,获得积分10
41秒前
www完成签到 ,获得积分10
44秒前
45秒前
Glory完成签到 ,获得积分10
48秒前
fjhsg25完成签到,获得积分20
49秒前
笨笨忘幽完成签到,获得积分10
50秒前
hhh2018687完成签到,获得积分10
51秒前
CLTTT完成签到,获得积分10
55秒前
山复尔尔应助fjhsg25采纳,获得10
56秒前
1分钟前
斯文败类应助liaomr采纳,获得10
1分钟前
自己发布了新的文献求助10
1分钟前
我是老大应助自己采纳,获得10
1分钟前
chi完成签到 ,获得积分10
1分钟前
陈俊雷完成签到 ,获得积分10
1分钟前
1分钟前
股价发布了新的文献求助10
1分钟前
正直的夏真完成签到 ,获得积分10
1分钟前
zjw完成签到,获得积分10
1分钟前
哎健身完成签到 ,获得积分10
1分钟前
深情安青应助股价采纳,获得30
1分钟前
小鱼完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
woods完成签到,获得积分10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
dididi发布了新的文献求助20
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155787
捐赠科研通 3245462
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247