MRI Texture Analysis for Preoperative Prediction of Lymph Node Metastasis in Patients with Nonsquamous Cell Cervical Carcinoma

医学 磁共振成像 放射科 组内相关 核医学 临床心理学 心理测量学
作者
Mei Xiao,Wei Yan,Jing Zhang,Junming Jian,Yang Song,Zi-Jing Lin,Lan Qian,Guofu Zhang,Jin Wei Qiang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (11): 1661-1671 被引量:5
标识
DOI:10.1016/j.acra.2022.01.005
摘要

•The predictive factors of lymph node metastasis (LNM) in adenocarcinoma components are different from those in squamous cell cervical carcinoma (SCC). •The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models showed good discrimination ability in predicting LNM in patients with cervical non-SCC. •The T2WI+DWI-based, T2WI+DWI+CE-T1WI-based and T2WI+DWI+LNS-MRI-based models performed better than positive LN morphological criteria on MRI and yielded similar discrimination abilities in predicting LNM in patients with cervical non-SCC. Rationale and Objectives To preoperatively predict lymph node metastasis (LNM) in patients with cervical nonsquamous cell carcinoma (non-SCC) based on magnetic resonance imaging (MRI) texture analysis. Materials and Methods This retrospective study included 104 consecutive patients (mean age of 47.2 ± 11.3 years) with stage IB–IIA cervical non-SCC. According to the ratio of 7:3, 72, and 32 patients were randomly divided into the training and testing cohorts. A total of 272 original features were extracted. In the process of feature selection, features with intraclass correlation coefficients (ICCs) less than 0.8 were eliminated. The Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) were applied to reduce redundancy, overfitting, and selection biases. Further, a support vector machine (SVM) with linear kernel function was applied to select the optimal feature set with a high discrimination power. Results The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI (LN status on MRI)-based SVM models yielded an AUC and accuracy of 0.78 and 0.79; 0.79 and 0.69; 0.79 and 0.81 for predicting LNM in the training cohort, and 0.82 and 0.78; 0.82 and 0.69; 0.79 and 0.72 in the testing cohort. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models performed better than morphologic criteria of LNS-MRI and yield similar discrimination abilities in predicting LNM in the training and testing cohorts (all p-value > 0.05). In addition, the T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the AC and ASC subgroups (all p-value > 0.05). Conclusion The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI+DWI+LNS-MRI-based SVM models showed similar good discrimination ability and performed better than the morphologic criteria of LNS-MRI in predicting LNM in patients with cervical non-SCC. The inclusion of the CE-T1WI sequence and morphologic criteria of LNS-MRI did not significantly improve the performance of the T2WI + DWI-based model. The T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the subgroup analysis. To preoperatively predict lymph node metastasis (LNM) in patients with cervical nonsquamous cell carcinoma (non-SCC) based on magnetic resonance imaging (MRI) texture analysis. This retrospective study included 104 consecutive patients (mean age of 47.2 ± 11.3 years) with stage IB–IIA cervical non-SCC. According to the ratio of 7:3, 72, and 32 patients were randomly divided into the training and testing cohorts. A total of 272 original features were extracted. In the process of feature selection, features with intraclass correlation coefficients (ICCs) less than 0.8 were eliminated. The Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) were applied to reduce redundancy, overfitting, and selection biases. Further, a support vector machine (SVM) with linear kernel function was applied to select the optimal feature set with a high discrimination power. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI (LN status on MRI)-based SVM models yielded an AUC and accuracy of 0.78 and 0.79; 0.79 and 0.69; 0.79 and 0.81 for predicting LNM in the training cohort, and 0.82 and 0.78; 0.82 and 0.69; 0.79 and 0.72 in the testing cohort. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models performed better than morphologic criteria of LNS-MRI and yield similar discrimination abilities in predicting LNM in the training and testing cohorts (all p-value > 0.05). In addition, the T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the AC and ASC subgroups (all p-value > 0.05). The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI+DWI+LNS-MRI-based SVM models showed similar good discrimination ability and performed better than the morphologic criteria of LNS-MRI in predicting LNM in patients with cervical non-SCC. The inclusion of the CE-T1WI sequence and morphologic criteria of LNS-MRI did not significantly improve the performance of the T2WI + DWI-based model. The T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the subgroup analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薰硝壤应助年轻寒蕾采纳,获得50
刚刚
慕青应助阮绿凝采纳,获得10
刚刚
华仔应助wyq采纳,获得10
刚刚
阿尔法贝塔完成签到 ,获得积分10
刚刚
1秒前
1秒前
kitsch应助xtutang采纳,获得10
1秒前
2秒前
热情蜜蜂完成签到,获得积分10
2秒前
xiapihpou完成签到,获得积分10
2秒前
2秒前
李杰完成签到,获得积分20
3秒前
小慧儿发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
薰硝壤应助wangjue采纳,获得30
4秒前
4秒前
5秒前
娜娜发布了新的文献求助10
5秒前
5秒前
熊熊发布了新的文献求助30
5秒前
CipherSage应助于采文采纳,获得10
5秒前
6秒前
6秒前
6秒前
成就觅翠发布了新的文献求助10
7秒前
风中晓露完成签到,获得积分10
7秒前
8秒前
汉堡包应助洪对对采纳,获得10
8秒前
海小兔发布了新的文献求助10
8秒前
8秒前
大方听云发布了新的文献求助10
8秒前
AbMole_小智完成签到,获得积分10
8秒前
9秒前
cmwcmw发布了新的文献求助10
9秒前
竹坞听荷发布了新的文献求助10
9秒前
wyq完成签到,获得积分20
9秒前
鸡翅发布了新的文献求助20
10秒前
YHY完成签到,获得积分10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788