计算机科学
股票市场
股票价格
库存(枪支)
证券交易所
计量经济学
算法
人工智能
机器学习
经济
财务
系列(地层学)
工程类
机械工程
古生物学
马
生物
作者
Ariane Yustisiani Mutmainah,Umi Marfuah,Rina Nopianti,Andreas Tri Panudju
出处
期刊:International journal of advanced research
[International Journal Of Advanced Research]
日期:2022-01-31
卷期号:10 (01): 627-634
被引量:3
标识
DOI:10.21474/ijar01/14082
摘要
Investing, buying or selling on the stock exchange demands data analytical expertise and skill. Because the stock market is so dynamic, it takes data modelling to predict stock prices accurately. Machine learning can currently process and forecast data with high accuracy. We proposed using the Long-Short Term Memory (LSTM) algorithm to model data to anticipate market prices. This study's primary goal is to assess the machine learning algorithm's accuracy in forecasting stock price data and the optimal model construction epochs. The RMSE value of the LSTM method and the data model obtained the variation of the epochs value.
科研通智能强力驱动
Strongly Powered by AbleSci AI