电催化剂
配体(生物化学)
催化作用
材料科学
酞菁
氧还原反应
氧还原
解吸
化学
活化能
组合化学
氧气
物理化学
纳米技术
有机化学
吸附
电极
生物化学
受体
电化学
作者
Kuangmin Zhao,Suqin Liu,Yu‐Yang Li,Xianli Wei,Guanying Ye,Weiwei Zhu,Yuke Su,Jue Wang,Hongtao Liu,Zhen He,Zhi‐You Zhou,Shi‐Gang Sun
标识
DOI:10.1002/aenm.202103588
摘要
Abstract Identifying the actual structure and tuning the catalytic activity of Fe–N 4 ‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N 4 ‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N 4 is provided and it is revealed that the ORR activity of Fe–N 4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH p x p y and Fe 3, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I − (PFePc‐I) with a low energy level of Fe 3 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N 4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N 4 .
科研通智能强力驱动
Strongly Powered by AbleSci AI