Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation

计算机视觉 人工智能 刀具磨损 帧(网络) 旋转(数学) 计算机科学 机械加工 机器视觉 机床 直方图 停工期 工程类 图像(数学) 机械工程 电信 操作系统
作者
Zhichao You,Hongli Gao,Liang Guo,Yuekai Liu,Jingbo Li,Changgen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108904-108904 被引量:23
标识
DOI:10.1016/j.ymssp.2022.108904
摘要

Tool condition monitoring (TCM) is an important guarantee for quality evaluation of products and parameter optimization of machining operations. The direct methods of TCM have made significant progress in condition recognition and wear measurement. However, these methods based on a single image that reflects the tool condition inevitably bring downtime to the machine tool. Moreover, a single image cannot reflect the tool wear characteristics integrity because the morphology of tool wear is complex. Regarding the issue above, the aim of this paper was to adaptively online monitoring for milling cutters. Firstly, tool condition image sequence (TCIS) is proposed in successive images to express and enhance tool wear characteristics from multiple angles. Secondly, the time-sequential gradient map between adjacent images is constructed based on histograms of oriented gradient. It is used to capture the initial frame of TCIS. Then, the subsequent images are encoded into the classification model. A logistic regression algorithm is applied to train the classification model to capture the end frame of TCIS. Finally, the tool wear area is located by balancing the rectangular box of wear area and benchmarks of wear measurement and is tracked based on the motion model and the local search. In the experiment of accelerating milling cutter life and three different failure phenomena, the recognition accuracy in the initial and end frame of TCIS is 100%. The average measurement accuracy of flank wear based on the proposed method in two experiments is up to 97.02% and 94.71%, respectively. These operations are automated online and provide complete data support for TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李明发布了新的文献求助10
1秒前
1秒前
CQ发布了新的文献求助10
1秒前
毛毛哦啊完成签到,获得积分10
1秒前
1秒前
熊猫苏完成签到,获得积分10
2秒前
ice发布了新的文献求助10
2秒前
Orange应助天Q采纳,获得10
2秒前
2秒前
Wang应助ll采纳,获得10
2秒前
玉玉完成签到,获得积分10
2秒前
3秒前
siestaMiao发布了新的文献求助10
3秒前
jane完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
ZHQ完成签到,获得积分10
4秒前
华天九四发布了新的文献求助10
4秒前
可宝想当富婆完成签到 ,获得积分10
5秒前
wan发布了新的文献求助10
5秒前
HP发布了新的文献求助10
6秒前
hd关闭了hd文献求助
6秒前
哭泣的访枫完成签到,获得积分20
6秒前
longtengfei完成签到,获得积分10
6秒前
研友_GZ3zRn发布了新的文献求助10
6秒前
一人一般发布了新的文献求助10
6秒前
丘比特应助军军问问张采纳,获得10
7秒前
研友_VZG7GZ应助姜姜采纳,获得10
7秒前
核桃发布了新的文献求助20
7秒前
称心的语芙完成签到,获得积分10
8秒前
要减肥的高山完成签到,获得积分10
8秒前
10秒前
小白完成签到,获得积分10
11秒前
MJ发布了新的文献求助10
11秒前
斯文败类应助LL采纳,获得30
11秒前
斯文败类应助C瓜菌采纳,获得10
11秒前
zhuiyu完成签到,获得积分10
11秒前
Hello应助坚定自信采纳,获得10
11秒前
华仔应助坚定自信采纳,获得10
11秒前
耍酷乐蕊完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163