Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation

计算机视觉 人工智能 刀具磨损 帧(网络) 旋转(数学) 计算机科学 机械加工 机器视觉 机床 直方图 停工期 工程类 图像(数学) 机械工程 电信 操作系统
作者
Zhichao You,Hongli Gao,Liang Guo,Yuekai Liu,Jingbo Li,Changgen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108904-108904 被引量:37
标识
DOI:10.1016/j.ymssp.2022.108904
摘要

Tool condition monitoring (TCM) is an important guarantee for quality evaluation of products and parameter optimization of machining operations. The direct methods of TCM have made significant progress in condition recognition and wear measurement. However, these methods based on a single image that reflects the tool condition inevitably bring downtime to the machine tool. Moreover, a single image cannot reflect the tool wear characteristics integrity because the morphology of tool wear is complex. Regarding the issue above, the aim of this paper was to adaptively online monitoring for milling cutters. Firstly, tool condition image sequence (TCIS) is proposed in successive images to express and enhance tool wear characteristics from multiple angles. Secondly, the time-sequential gradient map between adjacent images is constructed based on histograms of oriented gradient. It is used to capture the initial frame of TCIS. Then, the subsequent images are encoded into the classification model. A logistic regression algorithm is applied to train the classification model to capture the end frame of TCIS. Finally, the tool wear area is located by balancing the rectangular box of wear area and benchmarks of wear measurement and is tracked based on the motion model and the local search. In the experiment of accelerating milling cutter life and three different failure phenomena, the recognition accuracy in the initial and end frame of TCIS is 100%. The average measurement accuracy of flank wear based on the proposed method in two experiments is up to 97.02% and 94.71%, respectively. These operations are automated online and provide complete data support for TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wudilaoren发布了新的文献求助10
1秒前
Owen发布了新的文献求助10
1秒前
wangjie完成签到,获得积分10
2秒前
深情安青应助渴望者采纳,获得10
2秒前
大模型应助木木采纳,获得10
2秒前
3秒前
斯文败类应助勤奋梨愁采纳,获得10
3秒前
4秒前
爱笑爆米花完成签到,获得积分10
6秒前
backerry发布了新的文献求助50
6秒前
cc完成签到,获得积分10
6秒前
柠栀发布了新的文献求助10
6秒前
彩云之巅发布了新的文献求助10
7秒前
丘比特应助自觉远锋采纳,获得10
7秒前
海歌平发布了新的文献求助10
7秒前
7秒前
8秒前
王璐完成签到,获得积分10
9秒前
9秒前
9秒前
粗心小熊猫完成签到,获得积分10
9秒前
9秒前
10秒前
洁净的幼珊完成签到,获得积分10
10秒前
10秒前
五仁月饼完成签到,获得积分10
10秒前
10秒前
11秒前
cc发布了新的文献求助10
11秒前
安静翎完成签到,获得积分10
11秒前
11秒前
JamesPei应助qiqi7788采纳,获得10
12秒前
迟迟完成签到,获得积分10
12秒前
斯文败类应助wingsan采纳,获得10
13秒前
ran发布了新的文献求助10
13秒前
xxx发布了新的文献求助10
13秒前
jijijibibibi完成签到,获得积分10
14秒前
木木发布了新的文献求助10
16秒前
Yuuuuu发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403