Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation

计算机视觉 人工智能 刀具磨损 帧(网络) 旋转(数学) 计算机科学 机械加工 机器视觉 机床 直方图 停工期 工程类 图像(数学) 机械工程 电信 操作系统
作者
Zhichao You,Hongli Gao,Liang Guo,Yuekai Liu,Jingbo Li,Changgen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108904-108904 被引量:37
标识
DOI:10.1016/j.ymssp.2022.108904
摘要

Tool condition monitoring (TCM) is an important guarantee for quality evaluation of products and parameter optimization of machining operations. The direct methods of TCM have made significant progress in condition recognition and wear measurement. However, these methods based on a single image that reflects the tool condition inevitably bring downtime to the machine tool. Moreover, a single image cannot reflect the tool wear characteristics integrity because the morphology of tool wear is complex. Regarding the issue above, the aim of this paper was to adaptively online monitoring for milling cutters. Firstly, tool condition image sequence (TCIS) is proposed in successive images to express and enhance tool wear characteristics from multiple angles. Secondly, the time-sequential gradient map between adjacent images is constructed based on histograms of oriented gradient. It is used to capture the initial frame of TCIS. Then, the subsequent images are encoded into the classification model. A logistic regression algorithm is applied to train the classification model to capture the end frame of TCIS. Finally, the tool wear area is located by balancing the rectangular box of wear area and benchmarks of wear measurement and is tracked based on the motion model and the local search. In the experiment of accelerating milling cutter life and three different failure phenomena, the recognition accuracy in the initial and end frame of TCIS is 100%. The average measurement accuracy of flank wear based on the proposed method in two experiments is up to 97.02% and 94.71%, respectively. These operations are automated online and provide complete data support for TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sally完成签到,获得积分10
刚刚
L罗1完成签到,获得积分10
刚刚
浮游应助zz采纳,获得10
刚刚
刚刚
ding应助Windycityguy采纳,获得10
1秒前
青青发布了新的文献求助10
1秒前
2秒前
2秒前
个性的紫菜应助雨寒采纳,获得50
2秒前
3秒前
zhuzhu发布了新的文献求助10
3秒前
奋斗映寒完成签到,获得积分10
3秒前
3秒前
Breathe发布了新的文献求助10
3秒前
淡然的冰海完成签到,获得积分10
4秒前
yanyimeng发布了新的文献求助10
4秒前
猫的淡淡发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
刻苦的三问应助热情蜗牛采纳,获得10
6秒前
搜集达人应助kkkkkkkk采纳,获得10
6秒前
情怀应助yutian928采纳,获得10
7秒前
爆米花应助彭泽林采纳,获得10
7秒前
ffw1发布了新的文献求助10
8秒前
8秒前
呆萌的正豪完成签到,获得积分10
8秒前
8秒前
8秒前
阿鸢发布了新的文献求助20
8秒前
无昵称完成签到 ,获得积分10
8秒前
科研通AI6应助我爱乒乓球采纳,获得10
9秒前
煎饼果子发布了新的文献求助10
9秒前
Jasper应助奋斗的年纪采纳,获得10
9秒前
10秒前
LL完成签到 ,获得积分10
10秒前
Bi8bo发布了新的文献求助10
10秒前
薯条完成签到,获得积分10
10秒前
12发布了新的文献求助10
11秒前
大个应助幸运的蜥蜴采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403