Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation

计算机视觉 人工智能 刀具磨损 帧(网络) 旋转(数学) 计算机科学 机械加工 机器视觉 机床 直方图 停工期 工程类 图像(数学) 机械工程 电信 操作系统
作者
Zhichao You,Hongli Gao,Liang Guo,Yuekai Liu,Jingbo Li,Changgen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108904-108904 被引量:37
标识
DOI:10.1016/j.ymssp.2022.108904
摘要

Tool condition monitoring (TCM) is an important guarantee for quality evaluation of products and parameter optimization of machining operations. The direct methods of TCM have made significant progress in condition recognition and wear measurement. However, these methods based on a single image that reflects the tool condition inevitably bring downtime to the machine tool. Moreover, a single image cannot reflect the tool wear characteristics integrity because the morphology of tool wear is complex. Regarding the issue above, the aim of this paper was to adaptively online monitoring for milling cutters. Firstly, tool condition image sequence (TCIS) is proposed in successive images to express and enhance tool wear characteristics from multiple angles. Secondly, the time-sequential gradient map between adjacent images is constructed based on histograms of oriented gradient. It is used to capture the initial frame of TCIS. Then, the subsequent images are encoded into the classification model. A logistic regression algorithm is applied to train the classification model to capture the end frame of TCIS. Finally, the tool wear area is located by balancing the rectangular box of wear area and benchmarks of wear measurement and is tracked based on the motion model and the local search. In the experiment of accelerating milling cutter life and three different failure phenomena, the recognition accuracy in the initial and end frame of TCIS is 100%. The average measurement accuracy of flank wear based on the proposed method in two experiments is up to 97.02% and 94.71%, respectively. These operations are automated online and provide complete data support for TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ybmdyr完成签到,获得积分10
1秒前
zz发布了新的文献求助10
2秒前
领导范儿应助zyq采纳,获得10
2秒前
2秒前
浮游应助HJJHJH采纳,获得10
3秒前
思源应助HJJHJH采纳,获得10
3秒前
a379896033完成签到 ,获得积分10
5秒前
科研通AI6应助疏雨采纳,获得10
5秒前
c445507405完成签到 ,获得积分10
5秒前
葫芦娃发布了新的文献求助10
7秒前
星星boy完成签到,获得积分10
7秒前
lzzk发布了新的文献求助30
7秒前
8秒前
Sabrina完成签到,获得积分10
9秒前
阔达静珊完成签到,获得积分10
10秒前
外向樱完成签到,获得积分10
11秒前
刘小博发布了新的文献求助10
11秒前
12秒前
传奇3应助yl采纳,获得10
12秒前
阿紫吖完成签到,获得积分10
13秒前
圆圆完成签到 ,获得积分10
13秒前
许安完成签到,获得积分10
13秒前
15秒前
葫芦娃完成签到,获得积分10
15秒前
文艺绾绾发布了新的文献求助10
15秒前
16秒前
爱学有机完成签到,获得积分10
17秒前
袁寒烟发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
欧阳文淇关注了科研通微信公众号
21秒前
21秒前
Hello应助科研通管家采纳,获得10
22秒前
华仔应助小宇采纳,获得10
22秒前
事不过三应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
xiaolei001应助科研通管家采纳,获得30
23秒前
李健应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244