Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation

计算机视觉 人工智能 刀具磨损 帧(网络) 旋转(数学) 计算机科学 机械加工 机器视觉 机床 直方图 停工期 工程类 图像(数学) 机械工程 电信 操作系统
作者
Zhichao You,Hongli Gao,Liang Guo,Yuekai Liu,Jingbo Li,Changgen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108904-108904 被引量:23
标识
DOI:10.1016/j.ymssp.2022.108904
摘要

Tool condition monitoring (TCM) is an important guarantee for quality evaluation of products and parameter optimization of machining operations. The direct methods of TCM have made significant progress in condition recognition and wear measurement. However, these methods based on a single image that reflects the tool condition inevitably bring downtime to the machine tool. Moreover, a single image cannot reflect the tool wear characteristics integrity because the morphology of tool wear is complex. Regarding the issue above, the aim of this paper was to adaptively online monitoring for milling cutters. Firstly, tool condition image sequence (TCIS) is proposed in successive images to express and enhance tool wear characteristics from multiple angles. Secondly, the time-sequential gradient map between adjacent images is constructed based on histograms of oriented gradient. It is used to capture the initial frame of TCIS. Then, the subsequent images are encoded into the classification model. A logistic regression algorithm is applied to train the classification model to capture the end frame of TCIS. Finally, the tool wear area is located by balancing the rectangular box of wear area and benchmarks of wear measurement and is tracked based on the motion model and the local search. In the experiment of accelerating milling cutter life and three different failure phenomena, the recognition accuracy in the initial and end frame of TCIS is 100%. The average measurement accuracy of flank wear based on the proposed method in two experiments is up to 97.02% and 94.71%, respectively. These operations are automated online and provide complete data support for TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏绿柏完成签到,获得积分10
1秒前
勤恳化蛹完成签到 ,获得积分10
3秒前
4秒前
科目三应助独特的初丹采纳,获得10
4秒前
6秒前
7秒前
蒋50完成签到,获得积分10
8秒前
刘田完成签到 ,获得积分10
10秒前
ZZXX完成签到,获得积分10
10秒前
chengya发布了新的文献求助10
10秒前
Sudon完成签到 ,获得积分10
10秒前
XL发布了新的文献求助10
10秒前
阳光he完成签到,获得积分10
11秒前
11秒前
yuechat发布了新的文献求助10
12秒前
不配.应助奶昔采纳,获得10
12秒前
17秒前
123完成签到 ,获得积分10
18秒前
LaInh完成签到,获得积分10
18秒前
zhang26xian完成签到 ,获得积分10
21秒前
搜集达人应助XL采纳,获得10
23秒前
丘比特应助热依汗古丽采纳,获得10
23秒前
李健的小迷弟应助佳丽采纳,获得10
24秒前
25秒前
Dr.An完成签到 ,获得积分10
25秒前
26秒前
27秒前
丘比特应助无限的绮南采纳,获得10
30秒前
cannon8发布了新的文献求助10
31秒前
yanjiusheng完成签到,获得积分10
31秒前
ccccccc发布了新的文献求助10
31秒前
32秒前
唐宋元明清完成签到,获得积分0
32秒前
chengya驳回了Vena应助
33秒前
34秒前
小马甲应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
酷波er应助科研通管家采纳,获得150
34秒前
思源应助科研通管家采纳,获得10
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082501
求助须知:如何正确求助?哪些是违规求助? 2735655
关于积分的说明 7538441
捐赠科研通 2385263
什么是DOI,文献DOI怎么找? 1264761
科研通“疑难数据库(出版商)”最低求助积分说明 612786
版权声明 597665