A Single‐Ion Conducting Network as Rationally Coordinating Polymer Electrolyte for Solid‐State Li Metal Batteries

材料科学 电解质 法拉第效率 离子电导率 电化学 电导率 阳极 锂(药物) 金属 纳米技术 聚合物 金属锂 电化学窗口 化学工程 电极 复合材料 化学 物理化学 冶金 内分泌学 工程类 医学
作者
Hao Li,Yunfei Du,Qi Zhang,Yong Zhao,Fang Lian
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:12 (13) 被引量:89
标识
DOI:10.1002/aenm.202103530
摘要

Abstract Solid state single‐ion conducting polymer electrolytes (SSPEs) are one of the most promising candidates for long‐life lithium‐metal batteries. However, the traditional polyanion‐type structure of SSPEs inevitably gives rise to insufficient conductivity and inferior mechanical stability, which limits their practical application. Herein, an interpenetrating single‐ion network polymer (PTF‐4EO) is fabricated by crosslinking lithium tetrakis(4‐(chloromethyl)‐2,3,5,6‐tetrafluorophenyl)borate salt with tetraethylene glycol. The unique structure enables a PTF‐4EO with weakly interacting anions and coordinating ether oxygen segments that functions as a high‐performing SSPE, that delivers a high room‐temperature conductivity of 3.53 × 10 −4 S cm −1 , exceptional superior lithium‐ion transference number of 0.92, wide electrochemical window > 4.8 V, and good mechanical properties. Moreover, the resultant SSPE can directly participate in constructing a favorable Janus solid electrolyte interphase, which further enhances the interfacial stability of the metallic lithium anode. The as‐assembled LiFePO 4 ||Li solid batteries present prominent cycling stability, coulombic efficiency, and capacity retention over 200 cycles between 2.50 and 4.25 V. Furthermore, LiNi 0.7 Mn 0.2 Co 0.1 O 2 ||Li pouch cells exhibit remarkable safety even under harsh conditions. This study thereby offers a promising strategy for SSPE design to simultaneously achieve high ionic conductivity and good interfacial compatibility toward practical high‐energy‐density solid‐state lithium metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
LittleHu完成签到,获得积分20
1秒前
舒心的芮发布了新的文献求助10
1秒前
1秒前
啵萝味儿的奶盖完成签到 ,获得积分10
1秒前
dingdang完成签到,获得积分10
2秒前
小鸡快跑完成签到,获得积分10
3秒前
英俊的铭应助Quhang采纳,获得10
3秒前
3秒前
科研通AI6应助观察者采纳,获得10
3秒前
黎L完成签到,获得积分10
3秒前
4秒前
4秒前
上官若男应助bryan.yuan采纳,获得10
5秒前
赵怡然发布了新的文献求助10
5秒前
v111完成签到,获得积分10
5秒前
LittleHu发布了新的文献求助30
5秒前
卷发麦麦完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
zjj发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
冷酷严青发布了新的文献求助10
6秒前
7秒前
科研通AI6应助多肉葡萄采纳,获得30
7秒前
7秒前
leesc94完成签到,获得积分10
8秒前
无名花香完成签到,获得积分10
8秒前
8秒前
8秒前
遵义阿杜完成签到,获得积分10
9秒前
CMUSK发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108