UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning

空战 强化学习 形势意识 计算机科学 人工智能 运筹学 工程类 模拟 航空航天工程
作者
Zhang Jiandong,Qiming Yang,Guoqing Shi,Yi Lu,Yong Wu
出处
期刊:Chinese Journal of Systems Engineering and Electronics [Institute of Electrical and Electronics Engineers]
卷期号:32 (6): 1421-1438 被引量:67
标识
DOI:10.23919/jsee.2021.000121
摘要

In order to improve the autonomous ability of unmanned aerial vehicles (UAV) to implement air combat mission, many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried out, but these studies are often aimed at individual decision-making in 1v1 scenarios which rarely happen in actual air combat. Based on the research of the 1v1 autonomous air combat maneuver decision, this paper builds a multi-UAV cooperative air combat maneuver decision model based on multi-agent reinforcement learning. Firstly, a bidirectional recurrent neural network (BRNN) is used to achieve communication between UAV individuals, and the multi-UAV cooperative air combat maneuver decision model under the actor-critic architecture is established. Secondly, through combining with target allocation and air combat situation assessment, the tactical goal of the formation is merged with the reinforcement learning goal of every UAV, and a cooperative tactical maneuver policy is generated. The simulation results prove that the multi-UAV cooperative air combat maneuver decision model established in this paper can obtain the cooperative maneuver policy through reinforcement learning, the cooperative maneuver policy can guide UAVs to obtain the overall situational advantage and defeat the opponents under tactical cooperation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
VDC发布了新的文献求助10
1秒前
葛擎苍发布了新的文献求助10
2秒前
jimmyhui发布了新的文献求助10
2秒前
Pyrene发布了新的文献求助10
3秒前
ccc发布了新的文献求助10
4秒前
大可发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
JYX发布了新的文献求助10
8秒前
彭于晏应助dove采纳,获得10
8秒前
莉莉斯完成签到 ,获得积分10
8秒前
向雨竹发布了新的文献求助10
10秒前
沈达完成签到,获得积分20
10秒前
东方天奇发布了新的文献求助30
11秒前
渔Avery完成签到,获得积分10
11秒前
大渡河完成签到,获得积分10
11秒前
HC发布了新的文献求助10
12秒前
活力寻菱完成签到 ,获得积分10
12秒前
12秒前
14秒前
优美寻桃完成签到,获得积分10
15秒前
16秒前
jianwen1完成签到,获得积分10
16秒前
劲秉应助知性的白猫采纳,获得20
17秒前
宗师算个瓢啊完成签到 ,获得积分10
17秒前
17秒前
IvanLIu完成签到 ,获得积分10
18秒前
18秒前
优美寻桃发布了新的文献求助10
18秒前
wry关闭了wry文献求助
19秒前
19秒前
hhhhhhhhhh完成签到 ,获得积分10
19秒前
冬云完成签到,获得积分10
19秒前
20秒前
20秒前
lcm完成签到,获得积分10
21秒前
dove发布了新的文献求助10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765