FINEdex

计算机科学 可扩展性 再培训 杠杆(统计) 依赖关系(UML) 阻塞(统计) 分布式计算 方案(数学) 人工智能 计算机网络 数据库 数学分析 数学 国际贸易 业务
作者
Pengfei Li,Yu Hua,Jingnan Jia,Pengfei Zuo
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:15 (2): 321-334 被引量:31
标识
DOI:10.14778/3489496.3489512
摘要

Index structures in memory systems become important to improve the entire system performance. The promising learned indexes leverage deep-learning models to complement existing index structures and obtain significant performance improvements. Existing schemes rely on a delta-buffer to support the scalability, which however incurs high overheads when a large number of data are inserted, due to the needs of checking both learned indexes and extra delta-buffer. The practical system performance also decreases since the shared delta-buffer quickly becomes large and requires frequent retraining due to high data dependency. To address the problems of limited scalability and frequent retraining, we propose a FINE-grained learned index scheme with high scalability, called FINEdex, which constructs independent models with a flattened data structure (i.e., the data arrays with low data dependency) under the trained data array to concurrently process the requests with low overheads. By further efficiently exploring and exploiting the characteristics of the workloads, FINEdex processes the new requests in-place with the support of non-blocking retraining, hence adapting to the new distributions without blocking the systems. We evaluate FINEdex via YCSB and real-world datasets, and extensive experimental results demonstrate that FINEdex improves the performance respectively by up to 1.8× and 2.5× than state-of-the-art XIndex and Masstree. We have released the open-source codes of FINEdex for public use in GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助youlingduxiu采纳,获得10
2秒前
2秒前
研友_shuang发布了新的文献求助10
2秒前
3秒前
PK完成签到,获得积分10
3秒前
zhaowenxian发布了新的文献求助10
4秒前
yerong应助健忘的安萱采纳,获得30
4秒前
5秒前
清爽匪完成签到,获得积分20
5秒前
下南完成签到,获得积分10
5秒前
蛋花花花发布了新的文献求助10
6秒前
今后应助陈欣羽采纳,获得10
6秒前
lllxxx完成签到 ,获得积分10
7秒前
8秒前
clientprogram应助garrick采纳,获得20
9秒前
10秒前
10秒前
11秒前
TTT完成签到 ,获得积分10
12秒前
12秒前
12秒前
000完成签到,获得积分10
12秒前
swy212给swy212的求助进行了留言
14秒前
赘婿应助bobecust采纳,获得10
14秒前
JamesPei应助过时的不评采纳,获得10
14秒前
李健的小迷弟应助罐子采纳,获得10
15秒前
15秒前
15秒前
浅夏发布了新的文献求助10
17秒前
小慧儿完成签到,获得积分10
17秒前
17秒前
lalala发布了新的文献求助10
17秒前
蟹黄小笼包完成签到,获得积分10
18秒前
Ray发布了新的文献求助10
18秒前
追寻羿完成签到 ,获得积分10
18秒前
深情安青应助无限的隶采纳,获得10
19秒前
20秒前
科研通AI2S应助坚强南烟采纳,获得10
20秒前
Summer发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303