An Overview on Remote Sensing Image Classification Methods with a Focus on Support Vector Machine

支持向量机 过度拟合 人工智能 计算机科学 上下文图像分类 机器学习 模式识别(心理学) 核(代数) 领域(数学) 分类器(UML) 高光谱成像 图像(数学) 数据挖掘 人工神经网络 数学 组合数学 纯数学
作者
Haodong Li
标识
DOI:10.1109/conf-spml54095.2021.00019
摘要

With the growing demand for better performance of remote sensing (RS) image classification, a variety of methods have been proposed in RS image classification field in recent years. In general, there are two categories of RS image classification methods: pixel-based (PB) approach and object-based (OB) approach. In this paper, RS image classification methods are reviewed from the perspective of PB approach and OB approach and, specifically, the development and characteristics of a promising methodology for RS image classification named support vector machine (SVM) are surveyed. SVM is particularly popular in the RS field since it can deal with small-sized training dataset and provide higher classification accuracy than some traditional methods like maximum likelihood classifier. Besides, SVM has advantages of high memory-efficiency and strong generalization. However, SVM-based approaches also suffer from some problems. For instance, SVM-based methods tend to overfit due to inappropriate choice of kernel functions and it is inefficient for them to determine the optimum kernel function parameters as well as to process hyperspectral images. This paper also proposes the improvement of SVM-based methods aiming to address the limitations and improve the performance of SVM in RS image classification field. Moreover, future directions for SVM in RS image classification field are presented, expecting to help researchers to find possible research focuses in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xunxunmimi完成签到,获得积分10
刚刚
刚刚
刚刚
刘星星发布了新的文献求助10
1秒前
CodeCraft应助科研菜鸟采纳,获得20
1秒前
zyyyyyyyyyyy完成签到,获得积分10
2秒前
3秒前
研友_8yN60L发布了新的文献求助30
3秒前
打打应助柳七采纳,获得10
4秒前
零零二完成签到 ,获得积分10
4秒前
韭菜盒子发布了新的文献求助10
5秒前
Maestro_S完成签到,获得积分0
5秒前
volzzz发布了新的文献求助10
5秒前
wgglegg完成签到,获得积分10
5秒前
科研通AI5应助小胖鱼采纳,获得10
5秒前
酷波er应助黄超采纳,获得10
5秒前
5秒前
大智若愚啊完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
彬彬发布了新的文献求助10
6秒前
健壮丹妗完成签到 ,获得积分10
6秒前
Orange应助铸一字错采纳,获得10
6秒前
6秒前
Accept应助阿烨采纳,获得10
8秒前
欧阳小枫发布了新的文献求助10
9秒前
10秒前
Heidi完成签到 ,获得积分10
10秒前
见雨鱼发布了新的文献求助10
10秒前
学术扛把子完成签到 ,获得积分10
10秒前
Lucas应助陈某某采纳,获得10
10秒前
尊敬的钥匙完成签到,获得积分10
11秒前
12秒前
12秒前
赘婿应助无情的白桃采纳,获得10
12秒前
习习应助zhu96114748采纳,获得10
13秒前
英姑应助韭菜盒子采纳,获得10
13秒前
jbzmm完成签到 ,获得积分10
13秒前
36456657应助虚安采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740