亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Overview on Remote Sensing Image Classification Methods with a Focus on Support Vector Machine

支持向量机 过度拟合 人工智能 计算机科学 上下文图像分类 机器学习 模式识别(心理学) 核(代数) 领域(数学) 分类器(UML) 高光谱成像 图像(数学) 数据挖掘 人工神经网络 数学 组合数学 纯数学
作者
Haodong Li
标识
DOI:10.1109/conf-spml54095.2021.00019
摘要

With the growing demand for better performance of remote sensing (RS) image classification, a variety of methods have been proposed in RS image classification field in recent years. In general, there are two categories of RS image classification methods: pixel-based (PB) approach and object-based (OB) approach. In this paper, RS image classification methods are reviewed from the perspective of PB approach and OB approach and, specifically, the development and characteristics of a promising methodology for RS image classification named support vector machine (SVM) are surveyed. SVM is particularly popular in the RS field since it can deal with small-sized training dataset and provide higher classification accuracy than some traditional methods like maximum likelihood classifier. Besides, SVM has advantages of high memory-efficiency and strong generalization. However, SVM-based approaches also suffer from some problems. For instance, SVM-based methods tend to overfit due to inappropriate choice of kernel functions and it is inefficient for them to determine the optimum kernel function parameters as well as to process hyperspectral images. This paper also proposes the improvement of SVM-based methods aiming to address the limitations and improve the performance of SVM in RS image classification field. Moreover, future directions for SVM in RS image classification field are presented, expecting to help researchers to find possible research focuses in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo完成签到 ,获得积分10
3秒前
不器完成签到 ,获得积分10
10秒前
13秒前
15秒前
ltttyy发布了新的文献求助10
19秒前
燕小冷完成签到 ,获得积分10
24秒前
zz完成签到 ,获得积分10
27秒前
lwm不想看文献完成签到 ,获得积分10
43秒前
ltttyy完成签到,获得积分10
43秒前
45秒前
激动的晓筠完成签到 ,获得积分10
45秒前
科研通AI6应助MOMO采纳,获得10
50秒前
文艺的枫叶完成签到 ,获得积分10
52秒前
1分钟前
SCI发布了新的文献求助10
1分钟前
科研通AI6应助MOMO采纳,获得10
1分钟前
whj完成签到 ,获得积分10
1分钟前
SCI完成签到,获得积分10
1分钟前
1分钟前
能干的人完成签到,获得积分10
1分钟前
科研通AI6应助MOMO采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
fge完成签到,获得积分10
2分钟前
务实擎汉发布了新的文献求助10
2分钟前
2分钟前
MOMO发布了新的文献求助10
2分钟前
MchemG应助小天采纳,获得10
2分钟前
呜呜吴完成签到,获得积分10
2分钟前
靓丽的善斓完成签到 ,获得积分10
2分钟前
MOMO发布了新的文献求助10
3分钟前
MOMO发布了新的文献求助10
3分钟前
思源应助务实擎汉采纳,获得20
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
三点前我必睡完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585