Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism

脑电图 计算机科学 价(化学) 人工智能 唤醒 多任务学习 人工神经网络 机器学习 稳健性(进化) 模式识别(心理学) 语音识别 认知心理学 任务(项目管理) 心理学 神经科学 物理 管理 量子力学 经济 生物化学 化学 基因
作者
Chang Li,Bin Wang,Silin Zhang,Yü Liu,Rencheng Song,Juan Cheng,Xun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105303-105303 被引量:74
标识
DOI:10.1016/j.compbiomed.2022.105303
摘要

Deep learning (DL) technologies have recently shown great potential in emotion recognition based on electroencephalography (EEG). However, existing DL-based EEG emotion recognition methods are built on single-task learning, i.e., learning arousal, valence, and dominance individually, which may ignore the complementary information of different tasks. In addition, single-task learning involves a new round of training every time a new task appears, which is time consuming. To this end, we propose a novel method for EEG-based emotion recognition based on multi-task learning with capsule network (CapsNet) and attention mechanism. First, multi-task learning can learn multiple tasks simultaneously while exploiting commonalities and differences across tasks, it can also obtain more data from different tasks, which can improve generalization and robustness. Second, the innovative structure of the CapsNet enables it to effectively characterize the intrinsic relationship among various EEG channels. Finally, the attention mechanism can change the weight of different channels to extract important information. In the DEAP dataset, the average accuracy reached 97.25%, 97.41%, and 98.35% on arousal, valence, and dominance, respectively. In the DREAMER dataset, average accuracy reached 94.96%, 95.54%, and 95.52% on arousal, valence, and dominance, respectively. Experimental results demonstrate the efficiency of the proposed method for EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想住在火星上完成签到 ,获得积分20
3秒前
lzw123456发布了新的文献求助10
3秒前
英俊的铭应助RYL采纳,获得10
4秒前
NexusExplorer应助wshwx采纳,获得10
4秒前
4秒前
4秒前
FUN关闭了FUN文献求助
5秒前
情怀应助背后小刺猬采纳,获得10
6秒前
7秒前
邓佳鑫Alan应助mumumumu采纳,获得10
7秒前
两酒窝完成签到,获得积分10
7秒前
早点睡觉吧完成签到,获得积分10
8秒前
9秒前
11秒前
研友_VZG7GZ应助77采纳,获得10
11秒前
宁静致远发布了新的文献求助10
11秒前
liaofengnan发布了新的文献求助10
12秒前
健康的沂发布了新的文献求助30
12秒前
Dr.Jiang完成签到,获得积分10
13秒前
13秒前
JX完成签到 ,获得积分10
16秒前
ewk关闭了ewk文献求助
17秒前
热情的花瓣完成签到,获得积分10
17秒前
hyhyhyhy发布了新的文献求助10
18秒前
18秒前
科目三应助宗嘻嘻采纳,获得10
19秒前
RYL发布了新的文献求助10
19秒前
20秒前
20秒前
King16发布了新的文献求助10
21秒前
21秒前
22秒前
情怀应助霸气远锋采纳,获得10
22秒前
23秒前
23秒前
什米发布了新的文献求助10
23秒前
Yhyi完成签到,获得积分10
24秒前
王根基完成签到,获得积分10
24秒前
25秒前
露露发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542