X射线吸收精细结构
电催化剂
催化作用
锌
材料科学
吸附
过电位
选择性
化学工程
无机化学
电化学
化学
物理化学
有机化学
电极
物理
量子力学
光谱学
工程类
作者
Yaling Jia,Ziqian Xue,Jun Yang,Qinglin Liu,Jiahui Xian,Yicheng Zhong,Yamei Sun,Xiuxiu Zhang,Qinghua Liu,Dao‐Xin Yao,Guangqin Li
标识
DOI:10.1002/ange.202110838
摘要
Abstract Accurately regulating the selectivity of the oxygen reduction reaction (ORR) is crucial to renewable energy storage and utilization, but challenging. A flexible alteration of ORR pathways on atomically dispersed Zn sites towards high selectivity ORR can be achieved by tailoring the coordination environment of the catalytic centers. The atomically dispersed Zn catalysts with unique O‐ and C‐coordination structure (ZnO 3 C) or N‐coordination structure (ZnN 4 ) can be prepared by varying the functional groups of corresponding MOF precursors. The coordination environment of as‐prepared atomically dispersed Zn catalysts was confirmed by X‐ray absorption fine structure (XAFs). Notably, the ZnN 4 catalyst processes a 4 e − ORR pathway to generate H 2 O. However, controllably tailoring the coordination environment of atomically dispersed Zn sites, ZnO 3 C catalyst processes a 2 e − ORR pathway to generate H 2 O 2 with a near zero overpotential and high selectivity in 0.1 M KOH. Calculations reveal that decreased electron density around Zn in ZnO 3 C lowers the d‐band center of Zn, thus changing the intermediate adsorption and contributing to the high selectivity towards 2 e − ORR.
科研通智能强力驱动
Strongly Powered by AbleSci AI