Deep Reinforcement Learning From Demonstrations to Assist Service Restoration in Islanded Microgrids

强化学习 计算机科学 地铁列车时刻表 微电网 过程(计算) 水准点(测量) 人工智能 弹性(材料科学) 网格 适应性 弹道 机器学习 控制工程 控制(管理) 工程类 操作系统 地理 物理 天文 热力学 生物 数学 生态学 大地测量学 几何学
作者
Yan Du,Di Wu
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:13 (2): 1062-1072 被引量:58
标识
DOI:10.1109/tste.2022.3148236
摘要

Microgrids can be operated in island mode during utility grid outages to support service restoration and improve system resilience. To schedule and dispatch distributed energy resources (DERs) in an islanded microgrid, conventional model-based methods rely on accurate distribution network models and lack generalization and adaptability. Data-driven methods are promising for DER coordination but face practical challenges such as potential hazards to microgrids during online training and insufficient online training opportunities due to low outage rates. This paper presents a novel two-stage learning framework to identify an optimal restoration strategy. The proposed framework builds on the deep deterministic policy gradient from demonstrations, which is a dataset that contains a trajectory of states and the associated expert actions. At the pre-training stage, imitation learning is applied to equip the control agent with expert experiences to guarantee acceptable initial performance. At the online training stage, action clipping, reward shaping, and expert demonstrations are leveraged to ensure safe exploration while accelerating the training process. The proposed method is illustrated using the IEEE 123-node system and compared with a representative model-based method and the standard deep deterministic policy gradient method to prove solution accuracy and demonstrate increased computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhu发布了新的文献求助10
1秒前
小李完成签到,获得积分10
2秒前
妮劳斯完成签到 ,获得积分10
4秒前
4秒前
顾矜应助研友_8RyzBZ采纳,获得10
4秒前
NexusExplorer应助yu采纳,获得10
4秒前
孤巷的猫完成签到,获得积分10
4秒前
Ambition9完成签到,获得积分10
5秒前
5秒前
踏实的傲白完成签到 ,获得积分0
7秒前
8秒前
9秒前
Ambition9发布了新的文献求助10
10秒前
Hello应助金桔儿采纳,获得10
10秒前
11秒前
12秒前
充电宝应助Catherine_Song采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
予秋发布了新的文献求助10
14秒前
杉杉发布了新的文献求助10
15秒前
16秒前
17秒前
李曼婷发布了新的文献求助10
18秒前
科研通AI6应助阿卡米星采纳,获得10
18秒前
快乐绝悟完成签到,获得积分10
19秒前
小牧鱼完成签到,获得积分10
19秒前
萌萌雨发布了新的文献求助10
19秒前
CipherSage应助杉杉采纳,获得30
20秒前
20秒前
大个应助Luke采纳,获得10
21秒前
22秒前
萌萌发布了新的文献求助10
22秒前
22秒前
科研小小白完成签到 ,获得积分10
22秒前
23秒前
23秒前
23秒前
kytm完成签到,获得积分10
23秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667892
关于积分的说明 14769849
捐赠科研通 4610340
什么是DOI,文献DOI怎么找? 2529769
邀请新用户注册赠送积分活动 1498755
关于科研通互助平台的介绍 1467307