亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning From Demonstrations to Assist Service Restoration in Islanded Microgrids

强化学习 计算机科学 地铁列车时刻表 微电网 过程(计算) 水准点(测量) 人工智能 弹性(材料科学) 网格 适应性 弹道 机器学习 控制工程 控制(管理) 工程类 操作系统 地理 物理 天文 热力学 生物 数学 生态学 大地测量学 几何学
作者
Yan Du,Di Wu
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:13 (2): 1062-1072 被引量:58
标识
DOI:10.1109/tste.2022.3148236
摘要

Microgrids can be operated in island mode during utility grid outages to support service restoration and improve system resilience. To schedule and dispatch distributed energy resources (DERs) in an islanded microgrid, conventional model-based methods rely on accurate distribution network models and lack generalization and adaptability. Data-driven methods are promising for DER coordination but face practical challenges such as potential hazards to microgrids during online training and insufficient online training opportunities due to low outage rates. This paper presents a novel two-stage learning framework to identify an optimal restoration strategy. The proposed framework builds on the deep deterministic policy gradient from demonstrations, which is a dataset that contains a trajectory of states and the associated expert actions. At the pre-training stage, imitation learning is applied to equip the control agent with expert experiences to guarantee acceptable initial performance. At the online training stage, action clipping, reward shaping, and expert demonstrations are leveraged to ensure safe exploration while accelerating the training process. The proposed method is illustrated using the IEEE 123-node system and compared with a representative model-based method and the standard deep deterministic policy gradient method to prove solution accuracy and demonstrate increased computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳冬萱完成签到 ,获得积分10
2秒前
ele_yuki完成签到,获得积分10
10秒前
丘比特应助lijingyi采纳,获得10
11秒前
花谢完成签到,获得积分10
14秒前
Miao完成签到,获得积分10
18秒前
RIPCCCP发布了新的文献求助10
23秒前
duan完成签到 ,获得积分10
25秒前
32秒前
Akim应助Zert采纳,获得10
33秒前
36秒前
桐桐应助优雅的若雁采纳,获得10
42秒前
我是老大应助Noob_saibot采纳,获得10
52秒前
lovelife完成签到,获得积分10
53秒前
RIPCCCP完成签到,获得积分10
59秒前
krajicek完成签到,获得积分10
1分钟前
1分钟前
王ChungKing完成签到 ,获得积分10
1分钟前
充电宝应助虞美人采纳,获得10
1分钟前
1分钟前
沉静镜子发布了新的文献求助10
1分钟前
22222应助科研通管家采纳,获得30
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
22222应助科研通管家采纳,获得30
1分钟前
22222应助科研通管家采纳,获得30
1分钟前
liz_应助科研通管家采纳,获得10
1分钟前
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
orixero应助笑点低的斑马采纳,获得10
1分钟前
研友_ngqgY8完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
领导范儿应助沉静镜子采纳,获得10
2分钟前
虞美人发布了新的文献求助10
2分钟前
Criminology34发布了新的文献求助100
2分钟前
2分钟前
mosisa发布了新的文献求助10
2分钟前
2分钟前
Criminology34完成签到,获得积分0
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345996
求助须知:如何正确求助?哪些是违规求助? 4480753
关于积分的说明 13946737
捐赠科研通 4378353
什么是DOI,文献DOI怎么找? 2405817
邀请新用户注册赠送积分活动 1398371
关于科研通互助平台的介绍 1370927