二甲胺
检出限
材料科学
吸附
异质结
分子
线性范围
纳米颗粒
化学工程
选择性
纳米技术
化学
光电子学
物理化学
有机化学
色谱法
工程类
催化作用
作者
Kerui Xie,Yating Wang,Kangli Zhang,Ruihua Zhao,Zhangqi Chai,Jianping Du,Jinping Li
标识
DOI:10.1016/j.snr.2022.100084
摘要
Volatile organoamines exist widely in various industrial and commercial products. The chronic and prolonged exposure to amines can compromise human health and cause even the risk of serious illness. Herein, the aggregation of ZnO decorated with g-C3N4 (ZOCN) is synthesized and it can serve as enhanced sensitive sensor for the detection of dimethylamine (DMA). The structure, morphology, composition and band structure of the materials are characterized by various analytical techniques. The results show that, controllable additions of g-C3N4 affect self-assemble of nanoparticles and aggregation structure, even energy band, as confirmed by DFT calculation. Notably, the formed heterojunction is conductive to electron transfer and adsorption of more O2 molecules to form reactive oxygen species, thereby promoting the reaction between oxygen and DMA and leading to high sensitivity to DMA with a detection limit of 920 ppb and about 2.5 times higher sensitivity than pristine ZnO. ZOCN-based sensor shows a high selectivity to DMA, a fast response time (1 s) and a fast recovery time (40 s) to various concentrations of gas phase DMA at low temperatures. Additionally, the sensor exhibits a linear relationship between the response and concentration of DMA vapor in a wide concentration range, a characteristic that is desirable for quantitative analysis in gas sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI