体内
阿霉素
化学
腹腔注射
乳腺癌
外体
癌症
药物输送
肿瘤微环境
微泡
药理学
刘易斯肺癌
癌症研究
内科学
医学
化疗
生物
生物化学
小RNA
转移
有机化学
生物技术
基因
作者
Leila Rezakhani,Shima Rahmati,Sorayya Ghasemi,Morteza Alizadeh,Akram Alizadeh
标识
DOI:10.1016/j.chemphyslip.2022.105179
摘要
Using tissue engineering and modifying the tumor microenvironment, three-dimensional (3D) in vitro and in vivo cancer modeling can be performed with appropriate similarity to native. Exosomes derived from different sources have recently been used in cancer studies due to their anticancer effects. In this study, the effect of crab derived exosomes in 2 & 3-dimensional (2& 3D) in vivo models of breast cancer (BC) were investigated and compared with the doxorubicin (DOX).2D and 3D models of BC were induced using the chitosan/β-glycerol phosphate hydrogel (Ch/β-GP) and 1 × 106 4T1 cells in the female mice aged 6-8 weeks. 1 mg/ml exosome and 5 mg/kg DOX were injected by intratumoral (IT), intravenous (IV), and intraperitoneal (IP) methods into mice on day 9, 13, and 17 with and without hydrogel as a drug delivery system. After 21 days, the mice were sacrificed, and the tissues (lung, liver, and tumor) were removed. The weight and size of the tumor were measured. Real-time PCR assessed changes of VEGF, Bcl2, and P53 genes expression levels. Nitric oxide (NO) secretion from the cancer 3D model was evaluated by Griess assay.Based on the results, the size and weight of tumors in treated groups with exosomes and DOX were reduced significantly (P ≤ 0.001, P ≤ 0.002, P ≤ 0.02) in 2D and 3D models. Changes in VEGF, Bcl2 and P53 gene expression levels were less in the 3D model than in the 2D model. Drug delivery with hydrogel increased tumor inhibition compared to drug injection without hydrogel. Decreased NO secretion was observed in all treatment groups compared to the control group (untreated). Crab exosomes showed anti cancer effects on 2&3D models of BC. 3D model of BC showed greater drug resistance than the 2D model after treating with crab derived exosomes and DOX. 3D model of BC mimics native tumor better than 2D and can be used in cancer studies and for drug screening with greater confidence than 2D model. Also, the use of slow release drug delivery system reduced drug resistance in both models.
科研通智能强力驱动
Strongly Powered by AbleSci AI