清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning Strategies in Protein Directed Evolution

上位性 定向分子进化 定向进化 计算机科学 蛋白质工程 合成生物学 突变 计算生物学 人工智能 功能(生物学) 突变 机器学习 生物 遗传学 生物化学 基因 突变体
作者
Xavier F. Cadet,Jean Christophe Gelly,Aster van Noord,Frédéric Cadet,Carlos G. Acevedo‐Rocha
出处
期刊:Methods in molecular biology 卷期号:: 225-275 被引量:10
标识
DOI:10.1007/978-1-0716-2152-3_15
摘要

Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
燕山堂完成签到 ,获得积分10
17秒前
Frank发布了新的文献求助10
18秒前
wayne完成签到 ,获得积分10
27秒前
30秒前
djf点儿完成签到 ,获得积分10
44秒前
顾矜应助朴实的耳机采纳,获得10
49秒前
扬帆起航完成签到 ,获得积分10
51秒前
tmrrrrrr完成签到 ,获得积分10
53秒前
会扎针的小张完成签到,获得积分10
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
虚幻的尔竹完成签到 ,获得积分10
1分钟前
1分钟前
背书强完成签到 ,获得积分10
1分钟前
火花完成签到 ,获得积分10
1分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
zz完成签到 ,获得积分10
2分钟前
wefor完成签到 ,获得积分10
2分钟前
迷人的沛山完成签到 ,获得积分10
2分钟前
申木完成签到 ,获得积分10
2分钟前
段采萱完成签到 ,获得积分10
2分钟前
黄花菜完成签到 ,获得积分10
3分钟前
风不尽,树不静完成签到 ,获得积分10
3分钟前
3分钟前
fff发布了新的文献求助10
3分钟前
空曲完成签到 ,获得积分10
3分钟前
LELE完成签到 ,获得积分10
3分钟前
王磊完成签到 ,获得积分10
4分钟前
emxzemxz完成签到 ,获得积分10
4分钟前
xun完成签到,获得积分10
4分钟前
焚心结完成签到 ,获得积分10
4分钟前
AUGKING27完成签到 ,获得积分10
4分钟前
秋子骞完成签到 ,获得积分10
4分钟前
su完成签到 ,获得积分10
4分钟前
大大蕾完成签到 ,获得积分10
4分钟前
Sophie发布了新的文献求助10
4分钟前
badgerwithfisher完成签到,获得积分10
5分钟前
深情安青应助fff采纳,获得10
5分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068236
求助须知:如何正确求助?哪些是违规求助? 2722176
关于积分的说明 7476072
捐赠科研通 2369138
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609518
版权声明 596835