Fast VMAT planning for prostate radiotherapy: dosimetric validation of a deep learning-based initial segment generation method

放射治疗计划 医学 放射治疗 核医学 前列腺 剂量学 深度学习 计算机科学 医学物理学 人工智能 放射科 癌症 内科学
作者
Yimin Ni,Shufei Chen,Lyndon S. Hibbard,P. Voet
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (15): 155016-155016 被引量:2
标识
DOI:10.1088/1361-6560/ac80e5
摘要

Objective. To develop and evaluate a deep learning based fast volumetric modulated arc therapy (VMAT) plan generation method for prostate radiotherapy.Approach. A customized 3D U-Net was trained and validated to predict initial segments at 90 evenly distributed control points of an arc, linked to our research treatment planning system (TPS) for segment shape optimization (SSO) and segment weight optimization (SWO). For 27 test patients, the VMAT plans generated based on the deep learning prediction (VMATDL) were compared with VMAT plans generated with a previously validated automated treatment planning method (VMATref). For all test cases, the deep learning prediction accuracy, plan dosimetric quality, and the planning efficiency were quantified and analyzed.Main results. For all 27 test cases, the resulting plans were clinically acceptable. TheV95%for the PTV2 was greater than 99%, and theV107%was below 0.2%. Statistically significant difference in target coverage was not observed between the VMATrefand VMATDLplans (P = 0.3243 > 0.05). The dose sparing effect to the OARs between the two groups of plans was similar. Small differences were only observed for the Dmean of rectum and anus. Compared to the VMATref, the VMATDLreduced 29.3% of the optimization time on average.Significance. A fully automated VMAT plan generation method may result in significant improvement in prostate treatment planning efficiency. Due to the clinically acceptable dosimetric quality and high efficiency, it could potentially be used for clinical planning application and real-time adaptive therapy application after further validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付银薇完成签到 ,获得积分10
1秒前
大聪明完成签到,获得积分10
1秒前
1秒前
1秒前
李德胜发布了新的文献求助10
2秒前
一轮明月完成签到 ,获得积分10
2秒前
花痴的长颈鹿完成签到,获得积分10
3秒前
小鱼完成签到,获得积分10
3秒前
无情的菲鹰完成签到 ,获得积分10
3秒前
Lucy小影完成签到,获得积分10
4秒前
4秒前
南宫清涟应助DDT采纳,获得10
4秒前
5秒前
Dream完成签到,获得积分10
5秒前
大聪明发布了新的文献求助10
5秒前
快乐黑猫完成签到,获得积分10
5秒前
xiaohuihui完成签到,获得积分10
5秒前
IlIIlIlIIIllI应助纯真的冰蓝采纳,获得10
5秒前
MYZ完成签到,获得积分10
5秒前
yu完成签到,获得积分10
6秒前
freebird关注了科研通微信公众号
6秒前
小巫见大巫完成签到,获得积分20
6秒前
6秒前
36456657应助acuter采纳,获得10
6秒前
1111发布了新的文献求助10
7秒前
8秒前
Morty完成签到,获得积分10
8秒前
ljpsjdsm完成签到 ,获得积分10
8秒前
9秒前
unflycn发布了新的文献求助10
9秒前
twilight完成签到,获得积分10
9秒前
zhaoqiang完成签到 ,获得积分10
9秒前
欢呼阁完成签到,获得积分10
10秒前
研友_8YoVDn完成签到,获得积分10
11秒前
yan123发布了新的文献求助10
11秒前
11秒前
Venus完成签到,获得积分10
11秒前
海海完成签到,获得积分10
11秒前
zzzzzk发布了新的文献求助10
11秒前
静咿默完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450648
求助须知:如何正确求助?哪些是违规求助? 3046162
关于积分的说明 9005205
捐赠科研通 2734898
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693387
邀请新用户注册赠送积分活动 691589