Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials

超材料 材料科学 辅助 磁电机 声学 斗篷 光电子学 计算机科学 机械工程 磁铁 复合材料 物理 工程类
作者
Chunping Ma,Yilong Chang,Shu-Pao Wu,Ruike Renee Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (29): 33892-33902 被引量:37
标识
DOI:10.1021/acsami.2c09052
摘要

Metamaterials are artificially structured materials with unusual properties, such as negative Poisson's ratio, acoustic band gap, and energy absorption. However, metamaterials made of conventional materials lack tunability after fabrication. Thus, active metamaterials using magneto-mechanical actuation for untethered, fast, and reversible shape configurations are developed to tune the mechanical response and property of metamaterials. Although the magneto-mechanical metamaterials have shown promising capabilities in tunable mechanical stiffness, acoustic band gaps, and electromagnetic behaviors, the existing demonstrations rely on the forward design methods based on experience or simulations, by which the metamaterial properties are revealed only after the design. Considering the massive design space due to the material and structural programmability, a robust inverse design strategy is desired to create the magneto-mechanical metamaterials with preferred tunable properties. In this work, we develop an inverse design framework where a deep residual network replaces the conventional finite-element analysis for acceleration, realizing metamaterials with predetermined global strains under magnetic actuations. For validation, a direct-ink-writing printing method of the magnetic soft materials is adopted to fabricate the designed complex metamaterials. The deep learning-accelerated design framework opens avenues for the designs of magneto-mechanical metamaterials and other active metamaterials with target mechanical, acoustic, thermal, and electromagnetic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助云淡风清采纳,获得10
刚刚
元若白完成签到,获得积分10
2秒前
科目三应助jason采纳,获得10
2秒前
zou完成签到,获得积分10
2秒前
深情安青应助美好斓采纳,获得10
3秒前
小艾完成签到,获得积分10
3秒前
4秒前
友好若南发布了新的文献求助10
5秒前
充电宝应助王志恒采纳,获得10
5秒前
佐原新之助完成签到,获得积分10
7秒前
2021完成签到 ,获得积分10
7秒前
7秒前
薰硝壤应助WWW采纳,获得10
8秒前
9秒前
小颖子发布了新的文献求助10
9秒前
斯文败类应助Vizzy采纳,获得50
9秒前
chenqian完成签到,获得积分10
9秒前
悠悠发布了新的文献求助20
10秒前
ethyxwat发布了新的文献求助30
11秒前
11秒前
隐形曼青应助yu采纳,获得10
11秒前
纯洁完成签到,获得积分10
11秒前
无辜的姒发布了新的文献求助10
11秒前
浅浅完成签到,获得积分10
13秒前
独特霸完成签到,获得积分10
13秒前
Leigh完成签到,获得积分10
13秒前
13秒前
微笑驳完成签到 ,获得积分10
14秒前
谨言慎行发布了新的文献求助10
15秒前
ML完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
李爱国应助Duolalala采纳,获得10
16秒前
iNk应助xzy998采纳,获得10
17秒前
nikai完成签到,获得积分20
17秒前
呆萌幼晴完成签到,获得积分10
17秒前
18秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144366
求助须知:如何正确求助?哪些是违规求助? 2795962
关于积分的说明 7817099
捐赠科研通 2452017
什么是DOI,文献DOI怎么找? 1304837
科研通“疑难数据库(出版商)”最低求助积分说明 627295
版权声明 601419