Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials

超材料 材料科学 辅助 磁电机 声学 带隙 光电子学 计算机科学 机械工程 磁铁 复合材料 物理 工程类
作者
Chunping Ma,Yilong Chang,Shuai Wu,Ruike Renee Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (29): 33892-33902 被引量:57
标识
DOI:10.1021/acsami.2c09052
摘要

Metamaterials are artificially structured materials with unusual properties, such as negative Poisson's ratio, acoustic band gap, and energy absorption. However, metamaterials made of conventional materials lack tunability after fabrication. Thus, active metamaterials using magneto-mechanical actuation for untethered, fast, and reversible shape configurations are developed to tune the mechanical response and property of metamaterials. Although the magneto-mechanical metamaterials have shown promising capabilities in tunable mechanical stiffness, acoustic band gaps, and electromagnetic behaviors, the existing demonstrations rely on the forward design methods based on experience or simulations, by which the metamaterial properties are revealed only after the design. Considering the massive design space due to the material and structural programmability, a robust inverse design strategy is desired to create the magneto-mechanical metamaterials with preferred tunable properties. In this work, we develop an inverse design framework where a deep residual network replaces the conventional finite-element analysis for acceleration, realizing metamaterials with predetermined global strains under magnetic actuations. For validation, a direct-ink-writing printing method of the magnetic soft materials is adopted to fabricate the designed complex metamaterials. The deep learning-accelerated design framework opens avenues for the designs of magneto-mechanical metamaterials and other active metamaterials with target mechanical, acoustic, thermal, and electromagnetic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉曼岚发布了新的文献求助10
刚刚
1秒前
1秒前
上官若男应助小东采纳,获得10
1秒前
Maize_B73完成签到,获得积分10
2秒前
深情安青应助yu采纳,获得10
3秒前
3秒前
3秒前
跳跃凡桃发布了新的文献求助10
4秒前
Luo发布了新的文献求助10
4秒前
psj完成签到,获得积分10
5秒前
红樱绿柳发布了新的文献求助10
6秒前
zhou完成签到,获得积分10
7秒前
rsdggsrser完成签到 ,获得积分10
8秒前
8秒前
自觉曼岚完成签到,获得积分10
9秒前
跳跳熊完成签到,获得积分10
11秒前
无私的芹应助行者采纳,获得10
12秒前
13秒前
难过安露发布了新的文献求助10
14秒前
不孤独的发卡完成签到,获得积分10
14秒前
14秒前
情怀应助逢亮采纳,获得10
14秒前
plant发布了新的文献求助10
15秒前
小李完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
毛豆完成签到,获得积分0
17秒前
yu发布了新的文献求助10
19秒前
20秒前
谢海亮发布了新的文献求助10
21秒前
逢亮完成签到,获得积分10
21秒前
希望天下0贩的0应助Polong采纳,获得10
22秒前
科研通AI2S应助Luo采纳,获得10
22秒前
CipherSage应助温暖的醉蓝采纳,获得10
23秒前
嘻哈哈完成签到,获得积分10
24秒前
NexusExplorer应助跳跃凡桃采纳,获得10
25秒前
小吴完成签到,获得积分10
25秒前
25秒前
bai完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032