COSMA-RF: New intelligent model based on chaos optimized slime mould algorithm and random forest for estimating the peak cutting force of conical picks

算法 前角 人工神经网络 随机森林 数学 计算机科学 人工智能 工程类 机械工程 机械加工
作者
Jian Zhou,Yong Dai,Kun Du,Manoj Khandelwal,Chuanqi Li,Yingui Qiu
出处
期刊:Transportation geotechnics [Elsevier BV]
卷期号:36: 100806-100806 被引量:39
标识
DOI:10.1016/j.trgeo.2022.100806
摘要

Since conical pick cutting is a complex process of multi-factor coupling effects, theoretical model construction for cutting force prediction is a quite difficult task. In this paper, various novel intelligent models based on chaos-optimized slime mould algorithm (COSMA) and random forest (RF) are proposed for this task. In the proposed COSMA-RF methods, the chaos algorithms with the ergodicity and randomness are introduced to chaotically determine the initial position to form a COSMA, and the SMA and COSMA are used to tune the hyperparameters of RF and mean square error are assigned as a fitness function. Consequently, 205 data samples having seven variables (tensile strength of the rock σ t , compressive strength of the rock σ c , cone angle θ , cutting depth d , attack angle γ , rake angle α and back-clearance angle β ) and one output parameter peak cutting force ( PCF ) are collected from previous literature. Additionally, the performance of optimal COSMA-RF models is comprehensively compared with the existing theoretical formulae and four common machine algorithms, namely RF, extreme gradient boosting, extreme learning machine and back propagation neural network. The results indicate that Logistic map optimized SMA (LSMA), Sine map optimized SMA (SINSMA) and Sinusoidal map optimized SMA (SSMA) have better convergence ability and accuracy compared with original SMA. LSMA-RF, SINSMA-RF and SSMA-RF models yield better PCF prediction performance compared with theoretical formulae and common machine algorithms. Furthermore, sensitive analysis shows σ t , σ c , d and β are significantly sensitive to PCF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忆枫完成签到,获得积分10
3秒前
炒鸡小将发布了新的文献求助10
3秒前
花壳在逃野猪完成签到 ,获得积分10
3秒前
3秒前
银子吃好的完成签到,获得积分10
4秒前
西瓜霜完成签到 ,获得积分10
4秒前
科研废物完成签到 ,获得积分10
6秒前
冬月完成签到,获得积分10
6秒前
6秒前
马东完成签到,获得积分10
8秒前
搜集达人应助动听的秋白采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
华仔应助炒鸡小将采纳,获得10
10秒前
chizhi完成签到,获得积分10
10秒前
雪雨夜心应助白智妍采纳,获得10
11秒前
祁乐安发布了新的文献求助20
12秒前
fang应助科研通管家采纳,获得10
13秒前
梵高的向日葵完成签到,获得积分10
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
清爽的碧空完成签到,获得积分10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
fang应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得30
14秒前
fang应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
冷艳后妈完成签到,获得积分20
15秒前
激情的纲完成签到,获得积分10
15秒前
笑点低涵柳完成签到,获得积分10
16秒前
Kir发布了新的文献求助30
18秒前
suodeheng完成签到,获得积分10
21秒前
墨卿关注了科研通微信公众号
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029