COSMA-RF: New intelligent model based on chaos optimized slime mould algorithm and random forest for estimating the peak cutting force of conical picks

算法 前角 人工神经网络 随机森林 数学 计算机科学 人工智能 工程类 机械工程 机械加工
作者
Jian Zhou,Yong Dai,Kun Du,Manoj Khandelwal,Chuanqi Li,Yingui Qiu
出处
期刊:Transportation geotechnics [Elsevier]
卷期号:36: 100806-100806 被引量:39
标识
DOI:10.1016/j.trgeo.2022.100806
摘要

Since conical pick cutting is a complex process of multi-factor coupling effects, theoretical model construction for cutting force prediction is a quite difficult task. In this paper, various novel intelligent models based on chaos-optimized slime mould algorithm (COSMA) and random forest (RF) are proposed for this task. In the proposed COSMA-RF methods, the chaos algorithms with the ergodicity and randomness are introduced to chaotically determine the initial position to form a COSMA, and the SMA and COSMA are used to tune the hyperparameters of RF and mean square error are assigned as a fitness function. Consequently, 205 data samples having seven variables (tensile strength of the rock σ t , compressive strength of the rock σ c , cone angle θ , cutting depth d , attack angle γ , rake angle α and back-clearance angle β ) and one output parameter peak cutting force ( PCF ) are collected from previous literature. Additionally, the performance of optimal COSMA-RF models is comprehensively compared with the existing theoretical formulae and four common machine algorithms, namely RF, extreme gradient boosting, extreme learning machine and back propagation neural network. The results indicate that Logistic map optimized SMA (LSMA), Sine map optimized SMA (SINSMA) and Sinusoidal map optimized SMA (SSMA) have better convergence ability and accuracy compared with original SMA. LSMA-RF, SINSMA-RF and SSMA-RF models yield better PCF prediction performance compared with theoretical formulae and common machine algorithms. Furthermore, sensitive analysis shows σ t , σ c , d and β are significantly sensitive to PCF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助JUSTs0so采纳,获得10
刚刚
Beth完成签到,获得积分10
刚刚
粥粥发布了新的文献求助10
1秒前
1秒前
庞威完成签到 ,获得积分10
1秒前
2秒前
吕春雨完成签到,获得积分10
2秒前
Grayball应助ccc采纳,获得10
2秒前
3秒前
3秒前
勖勖完成签到,获得积分10
3秒前
邵裘发布了新的文献求助10
3秒前
3秒前
饕餮完成签到,获得积分10
4秒前
5秒前
wangg发布了新的文献求助10
5秒前
大个应助勤恳的依丝采纳,获得10
6秒前
星星发布了新的文献求助10
6秒前
spray发布了新的文献求助30
6秒前
LZJ完成签到,获得积分10
6秒前
7秒前
YE发布了新的文献求助30
7秒前
MHB应助叫滚滚采纳,获得10
8秒前
wzxxxx发布了新的文献求助10
8秒前
斯文败类应助勤劳傲晴采纳,获得10
9秒前
shilong.yang发布了新的文献求助10
9秒前
momo完成签到,获得积分10
10秒前
wxp_bioinfo完成签到,获得积分10
11秒前
11秒前
桐桐应助wangg采纳,获得10
11秒前
Jun完成签到,获得积分10
12秒前
芝士的酒发布了新的文献求助50
12秒前
13秒前
赘婿应助复杂的问玉采纳,获得30
13秒前
14秒前
14秒前
15秒前
端庄白开水完成签到,获得积分10
15秒前
吕春雨发布了新的文献求助10
15秒前
大个应助wxp_bioinfo采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808