Non-stationary harmonic summation: A novel method for rolling bearing fault diagnosis under variable speed conditions

谐波 脉冲(物理) 谐波 控制理论(社会学) 断层(地质) 噪音(视频) 计算机科学 声学 信号(编程语言) 振动 解调 电子工程 工程类 频道(广播) 物理 电压 人工智能 电信 电气工程 地质学 图像(数学) 地震学 量子力学 程序设计语言 控制(管理)
作者
Shiqian Chen,Xie Bo,Yi Wang,Kaiyun Wang,Wanming Zhai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (3): 1554-1580 被引量:1
标识
DOI:10.1177/14759217221110278
摘要

Fault diagnosis of rolling bearings under variable speed conditions is a challenging task since the vibration signal exhibits time-varying non-stationary characteristics and is usually contaminated by strong noise. Most of the current researches employ the adaptive filtering or signal decomposition methods to obtain the impulse signals caused by the bearing fault before feature extraction, which, however, are not capable of removing the in-band noise. To address this issue, a novel method called non-stationary harmonic summation (NHS) is proposed based on the fact that the repetitive impulses caused by the bearing fault consist of a series of equally-spaced harmonics in the frequency domain. Firstly, the harmonic characteristics are theoretically analyzed and the results show that the impulses contain non-stationary harmonics with a time-varying spacing frequency (i.e., the fault characteristic frequency) under variable speed conditions. Next, according to the harmonic characteristics, an efficient algorithm combining the parameterized demodulation with the adaptive chirp mode decomposition is developed to extract the non-stationary harmonics and then summate these harmonics to reconstruct the repetitive impulses for the fault feature extraction. Since the NHS elaborately exploits the intrinsic harmonic structure of the impulse signals, the noise can be fully removed and the reconstructed signal is free of side-band interference caused by complex amplitude modulation. Both simulated and experimental signals are considered to demonstrate the advantages of the NHS for bearing fault diagnosis under variable speed conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海4015发布了新的文献求助10
刚刚
Cristina2024发布了新的文献求助10
2秒前
2秒前
青年才俊完成签到 ,获得积分10
3秒前
天下完成签到,获得积分10
3秒前
打败他们完成签到 ,获得积分10
4秒前
8秒前
vincentbioinfo完成签到,获得积分10
10秒前
情怀应助酸奶采纳,获得10
11秒前
11秒前
Lucas应助肥肥采纳,获得10
11秒前
田様应助林lin采纳,获得10
11秒前
12秒前
abc发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
17秒前
18秒前
科研通AI2S应助jiejie采纳,获得30
19秒前
娄医生发布了新的文献求助10
20秒前
21秒前
23秒前
囧囧应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得200
23秒前
23秒前
luu发布了新的文献求助10
23秒前
LLL发布了新的文献求助10
23秒前
汉堡包应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
小蘑菇应助六氟合铂酸氙采纳,获得10
24秒前
24秒前
24秒前
abc完成签到,获得积分10
25秒前
852应助切菜的猪采纳,获得100
25秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103