Non-stationary harmonic summation: A novel method for rolling bearing fault diagnosis under variable speed conditions

谐波 脉冲(物理) 谐波 控制理论(社会学) 断层(地质) 噪音(视频) 计算机科学 声学 信号(编程语言) 解调 电子工程 工程类 频道(广播) 物理 电压 人工智能 电信 电气工程 地质学 图像(数学) 地震学 量子力学 程序设计语言 控制(管理)
作者
Shiqian Chen,Bo Xie,Yi Wang,Kaiyun Wang,Wanming Zhai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (3): 1554-1580 被引量:7
标识
DOI:10.1177/14759217221110278
摘要

Fault diagnosis of rolling bearings under variable speed conditions is a challenging task since the vibration signal exhibits time-varying non-stationary characteristics and is usually contaminated by strong noise. Most of the current researches employ the adaptive filtering or signal decomposition methods to obtain the impulse signals caused by the bearing fault before feature extraction, which, however, are not capable of removing the in-band noise. To address this issue, a novel method called non-stationary harmonic summation (NHS) is proposed based on the fact that the repetitive impulses caused by the bearing fault consist of a series of equally-spaced harmonics in the frequency domain. Firstly, the harmonic characteristics are theoretically analyzed and the results show that the impulses contain non-stationary harmonics with a time-varying spacing frequency (i.e., the fault characteristic frequency) under variable speed conditions. Next, according to the harmonic characteristics, an efficient algorithm combining the parameterized demodulation with the adaptive chirp mode decomposition is developed to extract the non-stationary harmonics and then summate these harmonics to reconstruct the repetitive impulses for the fault feature extraction. Since the NHS elaborately exploits the intrinsic harmonic structure of the impulse signals, the noise can be fully removed and the reconstructed signal is free of side-band interference caused by complex amplitude modulation. Both simulated and experimental signals are considered to demonstrate the advantages of the NHS for bearing fault diagnosis under variable speed conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助万事顺遂采纳,获得10
刚刚
华仔应助吉乐园采纳,获得10
1秒前
实验老六发布了新的文献求助10
3秒前
4秒前
shinco完成签到,获得积分20
5秒前
6秒前
CHRIS完成签到,获得积分10
7秒前
啦啦啦喽发布了新的文献求助10
8秒前
任小九完成签到,获得积分20
8秒前
9秒前
9秒前
keira发布了新的文献求助30
10秒前
赵成龙发布了新的文献求助10
10秒前
李健应助热心小松鼠采纳,获得10
10秒前
Ava应助热心小松鼠采纳,获得10
10秒前
深情安青应助热心小松鼠采纳,获得10
10秒前
Ava应助热心小松鼠采纳,获得10
10秒前
情怀应助热心小松鼠采纳,获得10
10秒前
英俊的铭应助卡农采纳,获得10
10秒前
orixero应助热心小松鼠采纳,获得10
10秒前
FashionBoy应助热心小松鼠采纳,获得30
10秒前
顾矜应助热心小松鼠采纳,获得10
11秒前
Owen应助热心小松鼠采纳,获得10
11秒前
nuomi发布了新的文献求助10
11秒前
共享精神应助热心小松鼠采纳,获得10
11秒前
chen完成签到,获得积分10
12秒前
小马甲应助CHRIS采纳,获得10
14秒前
14秒前
14秒前
ysy完成签到,获得积分10
14秒前
14秒前
will完成签到,获得积分10
14秒前
小郭发布了新的文献求助10
15秒前
16秒前
万事顺遂发布了新的文献求助10
16秒前
17秒前
阔达一刀发布了新的文献求助10
19秒前
dadadaxia完成签到,获得积分10
19秒前
19秒前
隐形曼青应助潘宋采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432