Pinnhypo: Hypocenter Localization Using Physics Informed Neural Networks

震源 Eikonal方程 残余物 人工神经网络 计算机科学 卷积神经网络 功能(生物学) 利用 事件(粒子物理) 人工智能 机器学习 地震学 数据挖掘 算法 物理 诱发地震 地质学 计算机安全 量子力学 进化生物学 生物
作者
I.E. Yildirim,Umair bin Waheed,Muhammad Izzatullah,Tariq Alkhalifah
标识
DOI:10.3997/2214-4609.202210773
摘要

Summary Many industrial activities needed to sustain human society have the potential to induce earthquakes. With the increasing availability of data and computational resources, researchers have started to exploit the capabilities of machine learning algorithms to detect, locate, and interpret seismic events. For hypocenter localization, typically a convolutional neural network (CNN) is trained in a supervised manner using a historical or synthetically generated dataset. However, this approach often requires a huge amount of labeled data that may not be readily available. Therefore, we propose a hypocenter location method based on the emerging paradigm of physics-informed neural networks (PINNs). Using observed P-wave arrival times for an event, we train a neural network by minimizing a loss function given by the misfit of observed and predicted traveltimes, and the residual of the eikonal equation. The hypocenter location is then obtained by finding the location of the minimum traveltime in the computational domain. Through synthetic tests, we show the efficacy of the proposed method in obtaining robust hypocenter locations, even in the presence of sparse traveltime observations. This is due to the use of the eikonal residual term in the loss function that acts as a physics-informed regularizer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄彧完成签到 ,获得积分10
刚刚
妮妮发布了新的文献求助10
刚刚
满意冰珍完成签到 ,获得积分10
1秒前
paleo-地质给paleo-地质的求助进行了留言
1秒前
wmfang完成签到,获得积分10
1秒前
气泡水发布了新的文献求助10
1秒前
2秒前
fanfan发布了新的文献求助10
2秒前
2秒前
饱满绝施应助雨霁采纳,获得10
3秒前
3秒前
cc发布了新的文献求助10
4秒前
4秒前
Terry完成签到,获得积分10
4秒前
wmfang发布了新的文献求助20
5秒前
5秒前
5秒前
Anonymous发布了新的文献求助10
5秒前
6秒前
LmaPN7发布了新的文献求助20
6秒前
北陌发布了新的文献求助10
6秒前
pcwang完成签到,获得积分10
6秒前
山月发布了新的文献求助50
6秒前
Epiphany完成签到,获得积分10
6秒前
深情安青应助小辉辉同学采纳,获得10
6秒前
Akim应助洁净的静芙采纳,获得10
6秒前
proteinpurify完成签到,获得积分10
8秒前
辛勤石头完成签到 ,获得积分10
9秒前
畅畅发布了新的文献求助10
9秒前
远山完成签到,获得积分10
9秒前
None完成签到,获得积分10
9秒前
10秒前
归海神刀发布了新的文献求助10
11秒前
迟迟发布了新的文献求助80
11秒前
HCLonely应助1253106702采纳,获得10
12秒前
12秒前
洁净的静芙完成签到,获得积分10
12秒前
Felice完成签到,获得积分10
12秒前
rosalieshi应助橘子阳光采纳,获得30
12秒前
我相信完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308114
求助须知:如何正确求助?哪些是违规求助? 2941617
关于积分的说明 8504720
捐赠科研通 2616297
什么是DOI,文献DOI怎么找? 1429556
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648748