Pinnhypo: Hypocenter Localization Using Physics Informed Neural Networks

震源 Eikonal方程 残余物 人工神经网络 计算机科学 卷积神经网络 功能(生物学) 利用 事件(粒子物理) 人工智能 机器学习 地震学 数据挖掘 算法 物理 诱发地震 地质学 计算机安全 量子力学 进化生物学 生物
作者
I.E. Yildirim,Umair bin Waheed,Muhammad Izzatullah,Tariq Alkhalifah
标识
DOI:10.3997/2214-4609.202210773
摘要

Summary Many industrial activities needed to sustain human society have the potential to induce earthquakes. With the increasing availability of data and computational resources, researchers have started to exploit the capabilities of machine learning algorithms to detect, locate, and interpret seismic events. For hypocenter localization, typically a convolutional neural network (CNN) is trained in a supervised manner using a historical or synthetically generated dataset. However, this approach often requires a huge amount of labeled data that may not be readily available. Therefore, we propose a hypocenter location method based on the emerging paradigm of physics-informed neural networks (PINNs). Using observed P-wave arrival times for an event, we train a neural network by minimizing a loss function given by the misfit of observed and predicted traveltimes, and the residual of the eikonal equation. The hypocenter location is then obtained by finding the location of the minimum traveltime in the computational domain. Through synthetic tests, we show the efficacy of the proposed method in obtaining robust hypocenter locations, even in the presence of sparse traveltime observations. This is due to the use of the eikonal residual term in the loss function that acts as a physics-informed regularizer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩恩轩发布了新的文献求助10
1秒前
结实的蘑菇完成签到 ,获得积分10
1秒前
1秒前
萧寒发布了新的文献求助10
4秒前
Verity应助张zhang采纳,获得10
4秒前
5秒前
6秒前
7秒前
9秒前
fanfan完成签到 ,获得积分10
9秒前
我是老大应助一蓑烟雨1122采纳,获得10
11秒前
wk发布了新的文献求助10
12秒前
阳光发布了新的文献求助10
13秒前
白子双发布了新的文献求助10
14秒前
14秒前
研友_VZG7GZ应助极电采纳,获得10
15秒前
16秒前
21秒前
22秒前
Mia233完成签到 ,获得积分10
22秒前
李健应助科研通管家采纳,获得30
22秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
shhoing应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
ding应助科研通管家采纳,获得10
23秒前
戴亮应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
yyzhou应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
24秒前
慕青应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
yyzhou应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915