震源
Eikonal方程
残余物
人工神经网络
计算机科学
卷积神经网络
功能(生物学)
利用
事件(粒子物理)
人工智能
机器学习
地震学
数据挖掘
算法
物理
诱发地震
地质学
计算机安全
量子力学
进化生物学
生物
作者
I.E. Yildirim,Umair bin Waheed,Muhammad Izzatullah,Tariq Alkhalifah
标识
DOI:10.3997/2214-4609.202210773
摘要
Summary Many industrial activities needed to sustain human society have the potential to induce earthquakes. With the increasing availability of data and computational resources, researchers have started to exploit the capabilities of machine learning algorithms to detect, locate, and interpret seismic events. For hypocenter localization, typically a convolutional neural network (CNN) is trained in a supervised manner using a historical or synthetically generated dataset. However, this approach often requires a huge amount of labeled data that may not be readily available. Therefore, we propose a hypocenter location method based on the emerging paradigm of physics-informed neural networks (PINNs). Using observed P-wave arrival times for an event, we train a neural network by minimizing a loss function given by the misfit of observed and predicted traveltimes, and the residual of the eikonal equation. The hypocenter location is then obtained by finding the location of the minimum traveltime in the computational domain. Through synthetic tests, we show the efficacy of the proposed method in obtaining robust hypocenter locations, even in the presence of sparse traveltime observations. This is due to the use of the eikonal residual term in the loss function that acts as a physics-informed regularizer.
科研通智能强力驱动
Strongly Powered by AbleSci AI