运动规划
同伦
趋同(经济学)
路径(计算)
数学优化
数学
职位(财务)
采样(信号处理)
完备性(序理论)
理论(学习稳定性)
概率逻辑
树(集合论)
控制理论(社会学)
计算机科学
工程类
机器人
人工智能
探测器
统计
数学分析
机器学习
电信
控制(管理)
财务
纯数学
经济
程序设计语言
经济增长
标识
DOI:10.1109/tie.2022.3177801
摘要
In a complex 3-D environment, efficiently and safely reaching the target position is of great significance for autonomous underwater vehicles. This article proposes a cylinder-based informed rapid exploration random tree (Cyl-iRRT*) algorithm, which seeks to find the homotopy optimal path by focusing the search space on the designed gradually shrinking cylinder. The proportional shrinkage method and obstacle-based sampling strategy are presented to yield a fast convergence response and robust stability. Furthermore, the probabilistic completeness and homotopic optimality of Cyl-iRRT* are proven to be effective. Finally, both simulation and real-world experimental results reveal the superiorities of the Cyl-iRRT* algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI