亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive large neighborhood search for the time-dependent profitable dial-a-ride problem

解算器 计算机科学 数学优化 利用 启发式 约束(计算机辅助设计) 局部搜索(优化) 整数规划 线性规划 算法 数学 几何学 计算机安全
作者
Jingyi Zhao,Mark Poon,Zhenzhen Zhang,Ruixue Gu
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:147: 105938-105938 被引量:11
标识
DOI:10.1016/j.cor.2022.105938
摘要

This paper is motivated by a non-emergency ambulance transportation service provider that picks up and drops off patients while considering both the time window for medical appointments and the maximum ride-time constraint for each patient. Varying travel times based on departure times further complicates the feasibility evaluation of a given route under both constraints. This problem aims to maximize the net profit which is calculated as the collected reward of serving the selected requests minus the total travel cost of the designed route. The problem is modeled as a time-dependent profitable dial-a-ride problem (TD-PDARP) with a single-vehicle using a mixed-integer linear programming (MILP) model. We propose a tailored feasibility evaluation procedure to handle the complicated maximum ride-time constraint under the time-dependent travel time model, which is then embedded in a hybrid algorithm to solve the proposed problem. This hybrid algorithm leverages an adaptive large neighborhood search (ALNS) for large-scale exploration together with local search (LS) techniques to exploit local regions comprehensively. We evaluate the performance of the proposed algorithm on newly generated TD-PDARP instances. The experiments show that our ALNS-LS algorithm can solve large instances that cannot be solved by commercial solvers in a reasonable time. Furthermore, for all instances that can be solved by the solver within 12 h, our proposed heuristic algorithm is able to obtain the optimal solutions and takes only 1.03% of the average run time required by the solver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
马良发布了新的文献求助10
44秒前
科研通AI5应助马良采纳,获得10
1分钟前
bkagyin应助狂奔弟弟采纳,获得10
1分钟前
1分钟前
1分钟前
狂奔弟弟发布了新的文献求助10
1分钟前
kingcoffee完成签到 ,获得积分10
1分钟前
斯文败类应助平淡的雁桃采纳,获得10
1分钟前
1分钟前
马良发布了新的文献求助10
2分钟前
平淡的雁桃完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助SarahG采纳,获得30
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
周同学发布了新的文献求助10
3分钟前
3分钟前
P_Chem完成签到,获得积分10
3分钟前
周同学发布了新的文献求助10
4分钟前
4分钟前
wenbo完成签到,获得积分0
4分钟前
Mercury完成签到,获得积分10
4分钟前
SarahG发布了新的文献求助30
4分钟前
SarahG完成签到,获得积分10
4分钟前
老石完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
周同学完成签到,获得积分20
5分钟前
千里草完成签到,获得积分10
5分钟前
周同学关注了科研通微信公众号
6分钟前
6分钟前
tenta发布了新的文献求助200
7分钟前
赘婿应助feifeiaym采纳,获得20
7分钟前
乐正亦寒完成签到 ,获得积分10
7分钟前
无情迎蕾完成签到,获得积分10
8分钟前
8分钟前
结实初柳完成签到,获得积分10
8分钟前
tenta完成签到,获得积分10
8分钟前
feifeiaym发布了新的文献求助20
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582250
求助须知:如何正确求助?哪些是违规求助? 4000012
关于积分的说明 12382029
捐赠科研通 3674909
什么是DOI,文献DOI怎么找? 2025436
邀请新用户注册赠送积分活动 1059193
科研通“疑难数据库(出版商)”最低求助积分说明 945843