Adaptive large neighborhood search for the time-dependent profitable dial-a-ride problem

解算器 计算机科学 数学优化 利用 启发式 约束(计算机辅助设计) 局部搜索(优化) 整数规划 线性规划 算法 数学 几何学 计算机安全
作者
Jingyi Zhao,Mark Poon,Zhenzhen Zhang,Ruixue Gu
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:147: 105938-105938 被引量:11
标识
DOI:10.1016/j.cor.2022.105938
摘要

This paper is motivated by a non-emergency ambulance transportation service provider that picks up and drops off patients while considering both the time window for medical appointments and the maximum ride-time constraint for each patient. Varying travel times based on departure times further complicates the feasibility evaluation of a given route under both constraints. This problem aims to maximize the net profit which is calculated as the collected reward of serving the selected requests minus the total travel cost of the designed route. The problem is modeled as a time-dependent profitable dial-a-ride problem (TD-PDARP) with a single-vehicle using a mixed-integer linear programming (MILP) model. We propose a tailored feasibility evaluation procedure to handle the complicated maximum ride-time constraint under the time-dependent travel time model, which is then embedded in a hybrid algorithm to solve the proposed problem. This hybrid algorithm leverages an adaptive large neighborhood search (ALNS) for large-scale exploration together with local search (LS) techniques to exploit local regions comprehensively. We evaluate the performance of the proposed algorithm on newly generated TD-PDARP instances. The experiments show that our ALNS-LS algorithm can solve large instances that cannot be solved by commercial solvers in a reasonable time. Furthermore, for all instances that can be solved by the solver within 12 h, our proposed heuristic algorithm is able to obtain the optimal solutions and takes only 1.03% of the average run time required by the solver.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LFY完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
lilili应助萱棚采纳,获得10
刚刚
852应助好运连连采纳,获得10
刚刚
CodeCraft应助张大旺采纳,获得10
刚刚
胖虎完成签到,获得积分10
1秒前
如昨应助科研通管家采纳,获得10
1秒前
NEKO发布了新的文献求助30
1秒前
如昨应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
2秒前
BareBear应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得30
2秒前
一一应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
xzn1123应助科研通管家采纳,获得10
2秒前
BareBear应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
聪明凡之应助科研通管家采纳,获得10
2秒前
2秒前
zxc完成签到,获得积分10
3秒前
5秒前
6秒前
feb完成签到,获得积分10
7秒前
南无三完成签到,获得积分10
8秒前
8秒前
好运连连发布了新的文献求助10
10秒前
zhou完成签到,获得积分10
10秒前
11秒前
张大旺发布了新的文献求助10
11秒前
16秒前
WZY完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851