Adaptive large neighborhood search for the time-dependent profitable dial-a-ride problem

解算器 计算机科学 数学优化 利用 启发式 约束(计算机辅助设计) 局部搜索(优化) 整数规划 线性规划 算法 数学 几何学 计算机安全
作者
Jingyi Zhao,Mark Poon,Zhenzhen Zhang,Ruixue Gu
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:147: 105938-105938 被引量:11
标识
DOI:10.1016/j.cor.2022.105938
摘要

This paper is motivated by a non-emergency ambulance transportation service provider that picks up and drops off patients while considering both the time window for medical appointments and the maximum ride-time constraint for each patient. Varying travel times based on departure times further complicates the feasibility evaluation of a given route under both constraints. This problem aims to maximize the net profit which is calculated as the collected reward of serving the selected requests minus the total travel cost of the designed route. The problem is modeled as a time-dependent profitable dial-a-ride problem (TD-PDARP) with a single-vehicle using a mixed-integer linear programming (MILP) model. We propose a tailored feasibility evaluation procedure to handle the complicated maximum ride-time constraint under the time-dependent travel time model, which is then embedded in a hybrid algorithm to solve the proposed problem. This hybrid algorithm leverages an adaptive large neighborhood search (ALNS) for large-scale exploration together with local search (LS) techniques to exploit local regions comprehensively. We evaluate the performance of the proposed algorithm on newly generated TD-PDARP instances. The experiments show that our ALNS-LS algorithm can solve large instances that cannot be solved by commercial solvers in a reasonable time. Furthermore, for all instances that can be solved by the solver within 12 h, our proposed heuristic algorithm is able to obtain the optimal solutions and takes only 1.03% of the average run time required by the solver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
JamesPei应助小可采纳,获得10
1秒前
粗暴的醉卉完成签到,获得积分10
1秒前
1秒前
科研通AI5应助stt采纳,获得10
2秒前
sunzhiyu233发布了新的文献求助10
3秒前
3秒前
缓缓地安静关注了科研通微信公众号
4秒前
4秒前
送外卖了完成签到,获得积分10
4秒前
Blue_Pig完成签到,获得积分10
4秒前
Orange应助feng采纳,获得10
4秒前
5秒前
考虑考虑发布了新的文献求助10
5秒前
毛慢慢发布了新的文献求助10
5秒前
阿宝发布了新的文献求助10
5秒前
深情安青应助通~采纳,获得10
5秒前
Percy完成签到 ,获得积分10
5秒前
xiuxiu_27发布了新的文献求助10
6秒前
顾矜应助千里采纳,获得10
6秒前
神勇的雅香应助妮儿采纳,获得10
6秒前
qi完成签到,获得积分10
7秒前
哒哒发布了新的文献求助10
7秒前
知行完成签到,获得积分10
7秒前
7秒前
8秒前
Yenom发布了新的文献求助10
8秒前
9秒前
滴滴发布了新的文献求助10
10秒前
心灵美发卡完成签到,获得积分10
10秒前
科目三应助浩浩大人采纳,获得10
11秒前
考虑考虑完成签到,获得积分10
11秒前
彪壮的刺猬完成签到,获得积分10
12秒前
杏花饼完成签到,获得积分10
12秒前
Ll发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759