Tikhonov正则化
独特性
数学
拉普拉斯变换
正规化(语言学)
数学分析
应用数学
柯西分布
哈达玛变换
反问题
分数阶微积分
反演(地质)
期限(时间)
边值问题
拉普拉斯逆变换
计算机科学
物理
量子力学
生物
构造盆地
古生物学
人工智能
作者
Liangliang Sun,Xiong-bin Yan,Kaifang Liao
出处
期刊:Journal of Inverse and Ill-posed Problems
[De Gruyter]
日期:2022-07-21
被引量:3
标识
DOI:10.1515/jiip-2021-0027
摘要
Abstract This paper is devoted to recovering simultaneously the fractional order and the space-dependent source term from partial Cauchy’s boundary data in a multidimensional time-fractional diffusion equation. The uniqueness of the inverse problem is obtained by employing analytic continuation and the Laplace transform. Then a modified non-stationary iterative Tikhonov regularization method with a regularization parameter chosen by a sigmoid-type function is used to find a stable approximate solution for the source term and the fractional order. Numerical examples in one-dimensional and two-dimensional cases are provided to illustrate the efficiency of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI