全基因组关联研究
统计模型
计算机科学
遗传关联
贝叶斯概率
统计能力
计算生物学
机器学习
联想(心理学)
人工智能
统计学习
生物
遗传学
统计
数学
基因型
心理学
单核苷酸多态性
基因
心理治疗师
作者
Mohsen Yoosefzadeh-Najafabadi,Milad Eskandari,François Belzile,Davoud Torkamaneh
标识
DOI:10.1007/978-1-0716-2237-7_4
摘要
Statistical models are at the core of the genome-wide association study (GWAS). In this chapter, we provide an overview of single- and multilocus statistical models, Bayesian, and machine learning approaches for association studies in plants. These models are discussed based on their basic methodology, cofactors adjustment accounted for, statistical power and computational efficiency. New statistical models and machine learning algorithms are both showing improved performance in detecting missed signals, rare mutations and prioritizing causal genetic variants; nevertheless, further optimization and validation studies are required to maximize the power of GWAS.
科研通智能强力驱动
Strongly Powered by AbleSci AI