Real-Time One-Stream Semantic-Guided Refinement Network for RGB-Thermal Salient Object Detection

计算机科学 RGB颜色模型 稳健性(进化) 编码器 人工智能 计算机视觉 目标检测 实时计算 模式识别(心理学) 生物化学 化学 基因 操作系统
作者
Fushuo Huo,Xuegui Zhu,Qian Zhang,Ziming Liu,Wenchao Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:73
标识
DOI:10.1109/tim.2022.3185323
摘要

Salient Object Detection (SOD) has been widely used in practical applications such as multi-sensor image fusion, remote sensing, and defect detection. Recently, SOD from RGB and Thermal (T) has been rapidly developed due to its robustness to extreme situations like low illumination and occlusion. However, existing methods all utilize a dual-stream encoder, which significantly increases the computation burdens and hinders real-world deployment. To this end, we propose a real-time One-stream Semantic-guided Refinement Network (OSRNet) for RGB-T SOD. Specifically, we firstly fuse the RGB and T via concatenation, addition, and multiplication operations to dig the complementary information between each modality. The efficient early fusion not only facilitates the information exchange between each modality but also avoids the cumbersome dual-stream encoder structure. Then, the light-weight decoder is proposed, making the high-level semantic information filter the low-level noisy features and gradually refine the final prediction. Also, we apply deep supervision to make the training procedure more stable and fast. Due to the early fusion strategy, OSRNet can run at a real-time speed (53-60fps) on a single GPU. Extensive quantitative and qualitative experiments show our network outperforms eleven state-of-the-art methods in terms of seven evaluation metrics. Our codes have been released at: https://github.com/huofushuo/OSRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得30
刚刚
szj关闭了szj文献求助
刚刚
老虎皮发布了新的文献求助10
刚刚
Owen应助Elva采纳,获得10
刚刚
hhhh发布了新的文献求助10
1秒前
对方正在讲话完成签到,获得积分10
3秒前
英姑应助丹丹采纳,获得10
3秒前
方乔杉发布了新的文献求助10
3秒前
whichwhy发布了新的文献求助10
3秒前
Hello应助Hhhhh采纳,获得10
4秒前
科研通AI5应助jl采纳,获得10
4秒前
刘荻萩应助HHHHTTTT采纳,获得10
5秒前
Rabbit完成签到 ,获得积分10
7秒前
lucky完成签到 ,获得积分10
9秒前
科研通AI5应助拥抱了一下采纳,获得10
9秒前
9秒前
小马甲应助一木采纳,获得10
9秒前
刘成奥发布了新的文献求助10
9秒前
慕青应助旺帮主采纳,获得10
9秒前
9秒前
10秒前
科研通AI5应助蓝风铃采纳,获得10
10秒前
小二郎应助侯mm采纳,获得10
11秒前
长江完成签到 ,获得积分10
12秒前
潼熙甄完成签到 ,获得积分10
12秒前
13秒前
13秒前
young发布了新的文献求助10
14秒前
hailang820316发布了新的文献求助10
15秒前
633333完成签到,获得积分10
16秒前
中和皇极应助TTT0530采纳,获得10
17秒前
17秒前
方乔杉完成签到,获得积分10
17秒前
狂野绿竹发布了新的文献求助10
17秒前
18秒前
tiger完成签到,获得积分10
18秒前
小灰熊发布了新的文献求助10
18秒前
Li完成签到,获得积分10
19秒前
舒伯特完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544116
求助须知:如何正确求助?哪些是违规求助? 3121321
关于积分的说明 9346532
捐赠科研通 2819334
什么是DOI,文献DOI怎么找? 1550167
邀请新用户注册赠送积分活动 722396
科研通“疑难数据库(出版商)”最低求助积分说明 713227