A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WW发布了新的文献求助10
1秒前
wusts完成签到,获得积分10
1秒前
王昕钥完成签到,获得积分10
2秒前
koko发布了新的文献求助10
2秒前
石头关注了科研通微信公众号
3秒前
箫涵完成签到,获得积分10
4秒前
4秒前
俊辰发布了新的文献求助10
4秒前
Ty发布了新的文献求助10
4秒前
5秒前
6秒前
木可可发布了新的文献求助10
6秒前
wusts发布了新的文献求助10
6秒前
7秒前
heibaixiang完成签到,获得积分10
7秒前
打打应助tt采纳,获得10
7秒前
7秒前
在水一方应助夏沫星星球采纳,获得10
8秒前
林林完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
屯屯鱼发布了新的文献求助10
9秒前
9秒前
orixero应助哎呀哎呀呀采纳,获得10
9秒前
共享精神应助太阳啊采纳,获得10
9秒前
10秒前
orixero应助种子采纳,获得10
11秒前
Lucas应助刘威采纳,获得10
11秒前
12秒前
13秒前
深年完成签到,获得积分10
13秒前
13秒前
An完成签到,获得积分10
13秒前
华仔应助Xhhaai采纳,获得10
13秒前
14秒前
15秒前
俊辰完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776692
求助须知:如何正确求助?哪些是违规求助? 5630245
关于积分的说明 15443636
捐赠科研通 4908741
什么是DOI,文献DOI怎么找? 2641390
邀请新用户注册赠送积分活动 1589383
关于科研通互助平台的介绍 1543956