清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忆茶戏完成签到 ,获得积分10
2秒前
小蘑菇应助mm采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
快乐随心完成签到 ,获得积分10
14秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
14秒前
奋斗的妙海完成签到 ,获得积分0
19秒前
carl完成签到,获得积分10
26秒前
共享精神应助mm采纳,获得10
27秒前
草莓熊1215完成签到 ,获得积分10
42秒前
由醉香完成签到 ,获得积分10
44秒前
Ziqingserra完成签到 ,获得积分10
45秒前
111完成签到 ,获得积分10
46秒前
小卡完成签到 ,获得积分10
48秒前
林利芳完成签到 ,获得积分0
52秒前
Able完成签到,获得积分10
1分钟前
科研通AI6应助Philthee采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
房房不慌完成签到 ,获得积分10
1分钟前
小山己几完成签到,获得积分10
1分钟前
赵一完成签到 ,获得积分10
1分钟前
火星的雪完成签到 ,获得积分0
1分钟前
学术小白完成签到 ,获得积分10
1分钟前
机智冥完成签到 ,获得积分10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
kk完成签到 ,获得积分10
2分钟前
yommi完成签到,获得积分10
2分钟前
双眼皮跳蚤完成签到,获得积分0
2分钟前
Lny发布了新的文献求助20
2分钟前
Heart_of_Stone完成签到 ,获得积分10
2分钟前
zpc猪猪完成签到,获得积分10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
LELE完成签到 ,获得积分10
2分钟前
卡卡光波完成签到,获得积分10
3分钟前
su完成签到 ,获得积分0
3分钟前
cadcae完成签到,获得积分10
3分钟前
外向的芒果完成签到 ,获得积分10
3分钟前
呆呆完成签到 ,获得积分10
3分钟前
自然代亦完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615048
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551