A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
houruibut发布了新的文献求助10
刚刚
刚刚
刚刚
友好汪完成签到,获得积分10
刚刚
llll发布了新的文献求助10
刚刚
outlaw_chen完成签到,获得积分10
刚刚
冰选若南完成签到,获得积分20
刚刚
qiqi完成签到 ,获得积分10
1秒前
1秒前
珞咔完成签到,获得积分20
1秒前
1秒前
Jasper应助Aurora采纳,获得10
1秒前
星辰大海应助逆风起笔采纳,获得10
1秒前
yulong发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
丘比特应助syy080837采纳,获得30
2秒前
2秒前
传奇3应助Wqhao采纳,获得10
3秒前
4秒前
4秒前
zhihaiyu发布了新的文献求助10
4秒前
学习完成签到 ,获得积分10
4秒前
CodeCraft应助四季安采纳,获得10
4秒前
斯文败类应助燕子采纳,获得10
5秒前
宁子发布了新的文献求助10
5秒前
烂漫紫易完成签到,获得积分10
5秒前
LLL发布了新的文献求助10
6秒前
小王完成签到,获得积分10
6秒前
英姑应助英俊001采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
情怀应助研友_8QxayZ采纳,获得10
7秒前
7秒前
111111111发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238