亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助乐求知采纳,获得10
9秒前
13秒前
21秒前
浮游漂漂应助科研通管家采纳,获得30
21秒前
Xx完成签到 ,获得积分10
22秒前
踏实的绣连完成签到 ,获得积分10
23秒前
111发布了新的文献求助10
26秒前
yr应助牛油果采纳,获得10
35秒前
37秒前
50秒前
summer完成签到,获得积分20
50秒前
55秒前
dad0ng发布了新的文献求助10
56秒前
1分钟前
小二郎应助dad0ng采纳,获得10
1分钟前
南风南下完成签到 ,获得积分10
1分钟前
Yu发布了新的文献求助10
1分钟前
zyyyy发布了新的文献求助10
1分钟前
1分钟前
jami-yu发布了新的文献求助10
1分钟前
jewel9完成签到,获得积分10
1分钟前
在水一方应助Yu采纳,获得10
1分钟前
明天一定早睡关注了科研通微信公众号
1分钟前
1分钟前
研友_LaOyQZ完成签到,获得积分10
1分钟前
A_123应助坦率的尔冬采纳,获得10
1分钟前
jami-yu完成签到,获得积分10
1分钟前
坦率的尔冬完成签到,获得积分10
1分钟前
万能图书馆应助哈哈哈采纳,获得10
1分钟前
1分钟前
dida完成签到,获得积分10
2分钟前
2分钟前
螃蟹发布了新的文献求助10
2分钟前
布布柳丁应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
布布柳丁应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763871
求助须知:如何正确求助?哪些是违规求助? 5545305
关于积分的说明 15405600
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635548
邀请新用户注册赠送积分活动 1583722
关于科研通互助平台的介绍 1538812