亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助lei采纳,获得10
7秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
21秒前
29秒前
lei发布了新的文献求助10
34秒前
鲜橙完成签到 ,获得积分10
48秒前
1分钟前
早茶可口完成签到,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英姑应助xingsixs采纳,获得10
2分钟前
2分钟前
研友发布了新的文献求助10
2分钟前
情怀应助欣喜面包采纳,获得10
2分钟前
斯文败类应助研友采纳,获得10
2分钟前
leesc94完成签到 ,获得积分10
2分钟前
所所应助颜安采纳,获得10
2分钟前
3分钟前
3分钟前
颜安发布了新的文献求助10
3分钟前
Ww完成签到,获得积分20
3分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
11完成签到,获得积分10
4分钟前
4分钟前
刘唯完成签到 ,获得积分10
4分钟前
TAD完成签到,获得积分10
4分钟前
有趣的银完成签到,获得积分10
5分钟前
TAD发布了新的文献求助50
5分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
VDC应助科研通管家采纳,获得20
6分钟前
6分钟前
sera发布了新的文献求助10
6分钟前
sera完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
xingsixs发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780498
求助须知:如何正确求助?哪些是违规求助? 5656395
关于积分的说明 15453219
捐赠科研通 4911090
什么是DOI,文献DOI怎么找? 2643298
邀请新用户注册赠送积分活动 1590958
关于科研通互助平台的介绍 1545477