A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzs发布了新的文献求助10
刚刚
卷饼发布了新的文献求助10
刚刚
怡然的寻桃完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
神经哈哈完成签到,获得积分10
2秒前
君临发布了新的文献求助10
2秒前
3秒前
慢慢发布了新的文献求助10
3秒前
4秒前
善学以致用应助ccc采纳,获得10
4秒前
阳阳完成签到,获得积分10
4秒前
xl完成签到 ,获得积分10
5秒前
求知的周发布了新的文献求助30
6秒前
meibeiwu关注了科研通微信公众号
6秒前
HZH发布了新的文献求助10
7秒前
小蘑菇完成签到 ,获得积分10
7秒前
nb小子发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
David发布了新的文献求助10
9秒前
团团完成签到,获得积分10
9秒前
zwx发布了新的文献求助10
10秒前
怡然的寻桃关注了科研通微信公众号
11秒前
今天炒鱿鱼完成签到,获得积分20
11秒前
电池小能手完成签到,获得积分10
12秒前
Bubble_bei完成签到 ,获得积分10
13秒前
董恋风完成签到,获得积分10
14秒前
大模型应助一一采纳,获得10
15秒前
15秒前
16秒前
海鑫王完成签到,获得积分10
17秒前
mao关注了科研通微信公众号
17秒前
Attendre完成签到 ,获得积分10
17秒前
爆米花应助Faith采纳,获得10
18秒前
傲娇的月亮完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049