A Benchmark Framework for Multiregion Analysis of Vesselness Filters

计算机科学 人工智能 水准点(测量) 滤波器(信号处理) 分割 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Jonas Lamy,Odyssée Merveille,Bertrand Kerautret,Nicolas Passat
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3649-3662 被引量:11
标识
DOI:10.1109/tmi.2022.3192679
摘要

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
yanmu2010应助科研通管家采纳,获得10
刚刚
kingwill应助科研通管家采纳,获得20
1秒前
银包铜应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Lucas完成签到,获得积分10
3秒前
C胖胖完成签到,获得积分10
3秒前
舒心的完成签到,获得积分10
3秒前
zz完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
luozejun完成签到,获得积分10
6秒前
ycp完成签到,获得积分10
7秒前
dawang完成签到 ,获得积分10
7秒前
洁净的智宸完成签到 ,获得积分10
7秒前
zhaopeipei发布了新的文献求助10
7秒前
eternity136完成签到,获得积分10
7秒前
8秒前
SciGPT应助zz采纳,获得10
8秒前
科研欣路完成签到,获得积分10
9秒前
bulingbuling发布了新的文献求助10
10秒前
斯文败类应助Y123采纳,获得10
10秒前
eternity136发布了新的文献求助10
10秒前
11秒前
共享精神应助zzq778采纳,获得10
11秒前
11秒前
11秒前
小辉发布了新的文献求助10
13秒前
跳跃小伙完成签到 ,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029