共轭体系
共价键
活性氧
亚胺
单宁酸
聚乙烯亚胺
发光
材料科学
化学
光化学
催化作用
有机化学
转染
生物化学
基因
聚合物
光电子学
作者
Jia You,Fang Yuan,Shasha Cheng,Qianqian Kong,Yuelin Jiang,Yuezhong Xian,Yuezhong Xian,Cuiling Zhang
标识
DOI:10.1021/acs.chemmater.2c01726
摘要
Synthesis of highly stable and emissive covalent organic frameworks (COFs) for biological applications is urgently needed. Herein, we developed a novel AIEgen-based sp2 carbon-conjugated COF (sp2c-COF) for activatable imaging and ferroptosis in target tumor cells. The sp2c-COFTFBE-PDAN was obtained by employing tetra-(4-aldehyde-(1,1-biphenyl)) ethylene (TFBE) as an AIEgen unit and 1,4-phenylenediacetonitrile (PDAN) as a linker through the Knoevenagel reaction. The as-obtained COFTFBE-PDAN exhibited high chemical stability even in 3 M HCl and 3 M NaOH and 146-fold quantum yield enhancement compared with the corresponding imine-linked COF due to the C═C linkages and the AIEgens. The luminescence of COFTFBE-PDAN was dramatically quenched by a tannic acid (TA)-based metal phenolic network (FeIIITA), which was formed via Fe(III)-directed metal–polyphenol coordination. After modified with polyethylenimine (PEI), COFTFBE-PDAN@FeIIITA-PEI was used for activatable imaging and ferroptosis. FeIIITA was dissociated in overexpressed glutathione (GSH) and the acidic lysosomal environment, which resulted in the recovery of luminescence and in situ Fe2+ production. Overloaded H2O2 in tumor cells could further react with Fe2+ to produce reactive oxygen species (ROS) via the Fenton reaction. GSH depletion and ROS production led to lipid peroxide accumulation-mediated ferroptosis. The luminescence recovery of COFTFBE-PDAN also enabled it to act as a self-reporter for the decomposition of FeIIITA and imaging in tumor cells. This study shows that AIEgen-based sp2c-COF displays great potential for tumor cell imaging and therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI