对映体药物
单加氧酶
苯乙烯
化学
残留物(化学)
环氧化物
对映选择合成
催化作用
酶
有机化学
细胞色素P450
共聚物
聚合物
作者
Shuang Dong,Donglin Fan,Qian Liu,Yinyin Meng,Xinyu Liu,Sen Yang,Hui Lin,Na Li,Hongge Chen
标识
DOI:10.1007/s00253-022-11843-z
摘要
Styrene monooxygenases (SMOs) are powerful enzymes for the synthesis of enantiopure epoxides, but these SMOs have narrow substrate spectra, and the residues in controlling enantioselectivity of SMOs remains unclear. A monooxygenase from Herbaspirillum huttiense (HhMO) was found to have excellent enantioselectivities and diastereoselectivities in the epoxidation of unconjugated terminal alkenes. Here we found that HhMO could also transfer styrene into styrene epoxide with 75% ee, and it could also catalyze the epoxidation of styrene derivatives into the corresponding epoxides with enantioselectivities up to 99% ee. Meanwhile, site 199 in the substrate access channel of HhMO was found to play an important role in the controlling enantioselectivity of the epoxidation. The E199L variant catalyzed the epoxidation of styrene with > 99% ee. The identification of critical residue that affects the enantioselectivity of SMOs would thus be valuable for creating efficient monooxygenases for the preparation of essential enantiopure epoxides. KEY POINTS: • Bioexpoxidation of both conjugated and unconjugated alkenes by HhMO with excellent enantioselectivities. • Gating residue 199 played an essential role in controlling the enantioselectivity of SMO. • HhMO E199L catalyzed the epoxidation of styrenes with up to > 99% ee.
科研通智能强力驱动
Strongly Powered by AbleSci AI