Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer

小RNA 等离子体子 前列腺癌 表面增强拉曼光谱 泌尿系统 纳米技术 外体 材料科学 计算生物学 微泡 拉曼散射 化学 生物 医学 癌症 拉曼光谱 内科学 基因 光电子学 物理 生物化学 光学
作者
Woo Hyun Kim,Jong Uk Lee,Myeong Jin Jeon,Kyong Hwa Park,Sang Jun Sim
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:205: 114116-114116 被引量:44
标识
DOI:10.1016/j.bios.2022.114116
摘要

The urinary exosomal miRNAs are recently emerging prostate cancer (PC)-associated biomarkers for the early-stage diagnosis and prognosis due to their non-invasiveness, inherent stability and the representation of the status of the originated cells. However, developing a urinary exosomal miRNA detection method with high accuracy is challenging because of the low abundance and high sequence homology of miRNAs. Herein, we present a quantitative and label-free miRNA sensing platform using surface-enhanced Raman scattering (SERS) based on three-dimensional (3D) hierarchical plasmonic nano-architecture to detect urinary exosomal miRNAs. This hierarchical nanostructure is constructed by self-assembly between target-complementary DNA probes-conjugated gold nanoparticles and head-flocked gold nanopillars in the presence of the target miRNAs, creating numerous 3D plasmonic hot-spots inducing exceedingly high amplification of SERS signals. This 3D SERS biosensor achieved ∼10 aM detection limits for the target miRNAs (miR-10a and miR-21), which is over 1000-fold more sensitive than previously reported miRNA sensors without the requirement of any labelling or pre-treatment steps. Finally, the clinical validation using urinary samples revealed that our 3D SERS sensor discriminates PC patients from healthy control with high diagnostic accuracy (0.93) based on the differential expression level of urinary exosomal miRNAs. These outputs demonstrate that our SERS sensor based on 3D hierarchical nano-architecture can offer facile, accurate and rapid methods to measure miRNA expression and is helpful for the diagnosis of various diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyiziyi发布了新的文献求助10
刚刚
哈哈哈haha发布了新的文献求助40
刚刚
刚刚
啵乐乐完成签到,获得积分10
1秒前
哈哈完成签到,获得积分20
1秒前
2秒前
logic完成签到,获得积分10
2秒前
岁月轮回发布了新的文献求助10
2秒前
小离发布了新的文献求助10
2秒前
CodeCraft应助艺玲采纳,获得10
2秒前
chenjyuu完成签到,获得积分10
3秒前
韭黄发布了新的文献求助10
3秒前
3秒前
子车雁开完成签到,获得积分10
3秒前
4秒前
4秒前
故意的傲玉应助经法采纳,获得10
5秒前
上官若男应助经法采纳,获得10
5秒前
buno应助经法采纳,获得10
5秒前
1111应助经法采纳,获得10
5秒前
Lucas应助经法采纳,获得10
5秒前
Jasper应助经法采纳,获得10
5秒前
5秒前
习习应助经法采纳,获得10
5秒前
小鱼骑单车应助经法采纳,获得10
5秒前
辰柒发布了新的文献求助10
6秒前
英俊的铭应助经法采纳,获得10
6秒前
wgl发布了新的文献求助10
6秒前
领导范儿应助氨基酸采纳,获得30
6秒前
6秒前
科研通AI2S应助zink采纳,获得10
7秒前
科目三应助Jimmy采纳,获得10
7秒前
7秒前
7秒前
芋圆Z.发布了新的文献求助10
8秒前
8秒前
东皇太憨完成签到,获得积分10
8秒前
8秒前
9秒前
润润轩轩发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759