Assessing normalization methods in mass spectrometry-based proteome profiling of clinical samples

规范化(社会学) 分位数 计算机科学 蛋白质组 数据挖掘 计算生物学 统计 生物信息学 数学 生物 社会学 人类学
作者
Etienne Dubois,Antonio Núñez Galindo,Loı̈c Dayon,Ornella Cominetti
出处
期刊:BioSystems [Elsevier]
卷期号:215-216: 104661-104661 被引量:16
标识
DOI:10.1016/j.biosystems.2022.104661
摘要

Large-scale proteomic studies have to deal with unwanted variability, especially when samples originate from different centers and multiple analytical batches are needed. Such variability is typically added throughout all the steps of a clinical research study, from human biological sample collection and storage, sample preparation, spectral data acquisition, to peptide and protein quantification. In order to remove such diverse and unwanted variability, normalization of the protein data is performed. There have been already several published reviews comparing normalization methods in the -omics field, but reports focusing on proteomic data generated with mass spectrometry (MS) are much fewer. Additionally, most of these reports have only dealt with small datasets.As a case study, here we focused on the normalization of a large MS-based proteomic dataset obtained from an overweight and obese pan-European cohort, where different normalization methods were evaluated, namely: center standardize, quantile protein, quantile sample, global standardization, ComBat, median centering, mean centering, single standard and removal of unwanted variation (RUV); some of these are generic normalization methods while others have been specifically created to deal with genomic or metabolomic data. We checked how relationships between proteins and clinical variables (e.g., gender, levels of triglycerides or cholesterol) were improved after normalizing the data with the different methods.Some normalization methods were better adapted for this particular large-scale shotgun proteomic dataset of human plasma samples labeled with isobaric tags and analyzed with liquid chromatography-tandem MS. In particular, quantile sample normalization, RUV, mean and median centering showed very good performances, while quantile protein normalization provided worse results than those obtained with unnormalized data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊一只发布了新的文献求助10
刚刚
刚刚
yaoyao发布了新的文献求助10
刚刚
繁多星完成签到,获得积分10
1秒前
1秒前
是的是的完成签到,获得积分10
1秒前
望着拥有完成签到,获得积分10
2秒前
希望天下0贩的0应助简一采纳,获得10
2秒前
多看文献完成签到,获得积分10
3秒前
3秒前
3秒前
ohh发布了新的文献求助10
4秒前
4秒前
糖糖发布了新的文献求助10
5秒前
5秒前
不吃豆皮发布了新的文献求助10
5秒前
香蕉觅云应助贲盼秋采纳,获得10
6秒前
完美世界应助鸿宇采纳,获得30
6秒前
无所谓完成签到,获得积分10
6秒前
谭小谭发布了新的文献求助10
7秒前
Zn应助Miles采纳,获得20
8秒前
方圆几里发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
脑洞疼应助义气绿柳采纳,获得20
10秒前
四文鱼发布了新的文献求助10
11秒前
11秒前
12秒前
二号发布了新的文献求助10
13秒前
不吃豆皮完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
rui发布了新的文献求助10
14秒前
李小鑫吖发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153