Patient-specific Boolean models of signalling networks guide personalised treatments

前列腺癌 癌变 计算生物学 信号 癌症 系统生物学 医学 生物信息学 癌症研究 计算机科学 生物 内科学 细胞生物学
作者
Arnau Montagud,Jonas Béal,Luis Tobalina,Pauline Traynard,Vigneshwari Subramanian,Bence Szalai,Róbert Alföldi,László G. Puskás,Alfonso Valencia,Emmanuel Barillot,Julio Sáez-Rodríguez,Laurence Calzone
出处
期刊:eLife [eLife Sciences Publications, Ltd.]
卷期号:11 被引量:57
标识
DOI:10.7554/elife.72626
摘要

Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
nku_xjli应助13采纳,获得10
2秒前
棉花糖发布了新的文献求助10
3秒前
清欢完成签到 ,获得积分10
6秒前
6秒前
LZL完成签到 ,获得积分10
6秒前
传奇3应助瞿寒采纳,获得10
7秒前
8秒前
七月完成签到,获得积分10
9秒前
大个应助zqq采纳,获得10
9秒前
9秒前
JunJun完成签到 ,获得积分10
9秒前
10秒前
自然盼晴关注了科研通微信公众号
10秒前
12秒前
12秒前
善学以致用应助dony采纳,获得10
13秒前
13秒前
leungsukmui完成签到,获得积分10
13秒前
Jamie完成签到,获得积分10
15秒前
高昊完成签到,获得积分10
15秒前
16秒前
17秒前
朴素板栗发布了新的文献求助10
18秒前
18秒前
爆米花应助qq采纳,获得10
18秒前
dhh完成签到,获得积分10
19秒前
21秒前
Owen应助正太低音炮采纳,获得10
21秒前
muyingleng应助执着的三问采纳,获得10
23秒前
kekeaiai发布了新的文献求助10
24秒前
Inter09完成签到,获得积分10
24秒前
26秒前
26秒前
V_I_G完成签到,获得积分10
27秒前
28秒前
虾米应助纯牛奶采纳,获得10
29秒前
29秒前
星星之火完成签到 ,获得积分10
30秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350675
求助须知:如何正确求助?哪些是违规求助? 2976307
关于积分的说明 8674001
捐赠科研通 2657413
什么是DOI,文献DOI怎么找? 1455046
科研通“疑难数据库(出版商)”最低求助积分说明 673634
邀请新用户注册赠送积分活动 664120