Establish a patent risk prediction model for emerging technologies using deep learning and data augmentation

专利侵权 商标 风险分析(工程) 计算机科学 投资(军事) 知识产权 新兴技术 公共领域 损害赔偿 业务 人工智能 法学 哲学 神学 政治 政治学 操作系统
作者
Yung-Chang Chi,Hei‐Chia Wang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:52: 101509-101509 被引量:14
标识
DOI:10.1016/j.aei.2021.101509
摘要

Technology patents are considered the source and bedrock of emerging technologies. Patents create value in any enterprise. However, obtaining patents is time consuming, expensive, and risky; especially if the patent application is rejected. The development of new patents requires extensive costs and resources, but sometimes they may be similar to other patents once the technology is fully developed. They might lack relevant patentable features and as a result, fail to pass the patent examination, resulting in investment losses. Patent infringement is also an especially important topic for reducing the risk of legal damages of patent holders, applicants, and manufacturers. Patent examinations have so far been performed manually. Due to manpower and time limitations, the examination time is exceedingly long and inefficient. Current patent similarity comparison research, and the classification algorithms of text mining are most commonly employed to provide analyses of the possibility of examination approval, but there is insufficient discussion about the possibility of infringement. However, if a new technology or innovation can be accurately determined in advance whether it likely to pass or fail (and why), or is at risk of patent infringement, losses can be mitigated. This research attempts to identify the issues involved in evaluating patent applications and infringement risks from existing patent databases. For each patent application, this research uses Convolutional Neural Networks, CNN + Long Short Term Memory Network, LSTM, prediction model, and the United States Patent and Trademark Office (USPTO) public utility patent application and reviews results based on keyword search. Then, data augmentation is utilized before performing model training; 10% of the approved and rejected applications are randomly selected as test cases, with the remaining 90% of the cases used to train the prediction model of this research in order to determine a model that can predict patent infringement and examination outcomes. Experimental results of the model in this study predicts that the accuracy of each classification is at least 87.7%, and can be used to find the classification of the reason for a rejection of a patent application failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wine1022完成签到,获得积分10
1秒前
科研通AI5应助卓若之采纳,获得10
1秒前
2秒前
3秒前
lisa发布了新的文献求助10
3秒前
whisper1108发布了新的文献求助10
3秒前
3秒前
3秒前
千千晚星发布了新的文献求助10
4秒前
椿上春树完成签到,获得积分10
4秒前
轻松盼望完成签到,获得积分10
5秒前
莫西莫西完成签到 ,获得积分10
5秒前
6秒前
6秒前
Yandy完成签到,获得积分10
7秒前
DrCuiTianjin完成签到 ,获得积分10
7秒前
7秒前
7秒前
yeurekar完成签到,获得积分10
7秒前
湛刘佳发布了新的文献求助10
8秒前
8秒前
坚强亦丝应助cyrong采纳,获得10
8秒前
jjj完成签到,获得积分20
8秒前
DBL完成签到,获得积分10
10秒前
wanci应助岁晚采纳,获得10
10秒前
野性的曼香完成签到,获得积分10
10秒前
小星星完成签到,获得积分10
10秒前
hj发布了新的文献求助10
12秒前
汉堡包应助赵十一采纳,获得10
12秒前
AthenaWang完成签到 ,获得积分0
12秒前
华仔应助poker84采纳,获得10
12秒前
djsj应助xzn1123采纳,获得10
12秒前
sss完成签到 ,获得积分10
12秒前
gxmu6322发布了新的文献求助10
13秒前
依灵完成签到,获得积分10
13秒前
庸人自扰完成签到,获得积分10
13秒前
13秒前
猫猫完成签到,获得积分10
14秒前
Denmark发布了新的文献求助50
14秒前
完美世界应助uqxiaowenzi采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931