已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Establish a patent risk prediction model for emerging technologies using deep learning and data augmentation

专利侵权 商标 风险分析(工程) 计算机科学 投资(军事) 知识产权 新兴技术 公共领域 损害赔偿 业务 人工智能 法学 哲学 政治学 操作系统 政治 神学
作者
Yung-Chang Chi,Hei‐Chia Wang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:52: 101509-101509 被引量:14
标识
DOI:10.1016/j.aei.2021.101509
摘要

Technology patents are considered the source and bedrock of emerging technologies. Patents create value in any enterprise. However, obtaining patents is time consuming, expensive, and risky; especially if the patent application is rejected. The development of new patents requires extensive costs and resources, but sometimes they may be similar to other patents once the technology is fully developed. They might lack relevant patentable features and as a result, fail to pass the patent examination, resulting in investment losses. Patent infringement is also an especially important topic for reducing the risk of legal damages of patent holders, applicants, and manufacturers. Patent examinations have so far been performed manually. Due to manpower and time limitations, the examination time is exceedingly long and inefficient. Current patent similarity comparison research, and the classification algorithms of text mining are most commonly employed to provide analyses of the possibility of examination approval, but there is insufficient discussion about the possibility of infringement. However, if a new technology or innovation can be accurately determined in advance whether it likely to pass or fail (and why), or is at risk of patent infringement, losses can be mitigated. This research attempts to identify the issues involved in evaluating patent applications and infringement risks from existing patent databases. For each patent application, this research uses Convolutional Neural Networks, CNN + Long Short Term Memory Network, LSTM, prediction model, and the United States Patent and Trademark Office (USPTO) public utility patent application and reviews results based on keyword search. Then, data augmentation is utilized before performing model training; 10% of the approved and rejected applications are randomly selected as test cases, with the remaining 90% of the cases used to train the prediction model of this research in order to determine a model that can predict patent infringement and examination outcomes. Experimental results of the model in this study predicts that the accuracy of each classification is at least 87.7%, and can be used to find the classification of the reason for a rejection of a patent application failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小HO完成签到 ,获得积分10
3秒前
史小菜应助kelvin采纳,获得30
5秒前
英勇羿发布了新的文献求助10
6秒前
6秒前
852应助半分甜采纳,获得10
9秒前
小鲤鱼完成签到 ,获得积分10
11秒前
12秒前
12秒前
愉快的宛海完成签到,获得积分20
12秒前
14秒前
14秒前
tomato完成签到 ,获得积分10
15秒前
qhy发布了新的文献求助10
16秒前
Ava应助淡淡博采纳,获得10
18秒前
檀檀发布了新的文献求助10
18秒前
18秒前
徐进发布了新的文献求助10
19秒前
20秒前
21秒前
隐形曼青应助小栖是菇凉采纳,获得10
21秒前
kiki发布了新的文献求助10
22秒前
半分甜发布了新的文献求助10
24秒前
XXXXbb完成签到,获得积分10
24秒前
JamesPei应助孩子气采纳,获得10
30秒前
31秒前
31秒前
YAO完成签到 ,获得积分10
31秒前
31秒前
33秒前
XXXXbb发布了新的文献求助10
33秒前
繁荣的青旋完成签到,获得积分10
33秒前
34秒前
XLL小绿绿发布了新的文献求助10
34秒前
35秒前
赫连立果发布了新的文献求助10
36秒前
自然剑发布了新的文献求助10
37秒前
小巧的雅旋完成签到,获得积分10
37秒前
等待春天发布了新的文献求助10
38秒前
40秒前
libe完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968138
求助须知:如何正确求助?哪些是违规求助? 3513109
关于积分的说明 11166577
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629