Establish a patent risk prediction model for emerging technologies using deep learning and data augmentation

专利侵权 商标 风险分析(工程) 计算机科学 投资(军事) 知识产权 新兴技术 公共领域 损害赔偿 业务 人工智能 法学 哲学 神学 政治 政治学 操作系统
作者
Yung-Chang Chi,Hei‐Chia Wang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:52: 101509-101509 被引量:14
标识
DOI:10.1016/j.aei.2021.101509
摘要

Technology patents are considered the source and bedrock of emerging technologies. Patents create value in any enterprise. However, obtaining patents is time consuming, expensive, and risky; especially if the patent application is rejected. The development of new patents requires extensive costs and resources, but sometimes they may be similar to other patents once the technology is fully developed. They might lack relevant patentable features and as a result, fail to pass the patent examination, resulting in investment losses. Patent infringement is also an especially important topic for reducing the risk of legal damages of patent holders, applicants, and manufacturers. Patent examinations have so far been performed manually. Due to manpower and time limitations, the examination time is exceedingly long and inefficient. Current patent similarity comparison research, and the classification algorithms of text mining are most commonly employed to provide analyses of the possibility of examination approval, but there is insufficient discussion about the possibility of infringement. However, if a new technology or innovation can be accurately determined in advance whether it likely to pass or fail (and why), or is at risk of patent infringement, losses can be mitigated. This research attempts to identify the issues involved in evaluating patent applications and infringement risks from existing patent databases. For each patent application, this research uses Convolutional Neural Networks, CNN + Long Short Term Memory Network, LSTM, prediction model, and the United States Patent and Trademark Office (USPTO) public utility patent application and reviews results based on keyword search. Then, data augmentation is utilized before performing model training; 10% of the approved and rejected applications are randomly selected as test cases, with the remaining 90% of the cases used to train the prediction model of this research in order to determine a model that can predict patent infringement and examination outcomes. Experimental results of the model in this study predicts that the accuracy of each classification is at least 87.7%, and can be used to find the classification of the reason for a rejection of a patent application failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANESTHESIA_XY完成签到 ,获得积分10
刚刚
逆位迷宫完成签到,获得积分10
刚刚
生动亚男发布了新的文献求助10
2秒前
ghn123456789完成签到,获得积分10
2秒前
顺利的妖妖完成签到 ,获得积分10
2秒前
124完成签到,获得积分10
3秒前
dery发布了新的文献求助10
3秒前
拽根大恐龙完成签到,获得积分10
4秒前
科研通AI5应助如意听枫采纳,获得10
4秒前
雨点从两旁划过完成签到 ,获得积分10
4秒前
超级玛丽完成签到 ,获得积分10
5秒前
自信的若风完成签到,获得积分10
6秒前
wqx完成签到 ,获得积分10
6秒前
6秒前
Ava应助alan采纳,获得10
7秒前
7秒前
Watson完成签到,获得积分10
7秒前
7秒前
KX2024完成签到,获得积分10
7秒前
优美的明辉完成签到,获得积分10
8秒前
桃桃甜筒完成签到,获得积分10
8秒前
凡而不庸完成签到,获得积分10
8秒前
boom完成签到,获得积分10
8秒前
轻松元绿完成签到 ,获得积分10
8秒前
蓝桉发布了新的文献求助30
8秒前
木冉完成签到,获得积分10
9秒前
kingwill举报比巴卜求助涉嫌违规
9秒前
more完成签到,获得积分20
10秒前
10秒前
FOOL完成签到,获得积分10
10秒前
onw完成签到,获得积分10
10秒前
糖糖糖唐完成签到,获得积分10
10秒前
营养小杨应助春分夏至采纳,获得10
11秒前
11秒前
寻炉乡发布了新的文献求助10
11秒前
赘婿应助顺利毕业采纳,获得10
11秒前
BlingBling完成签到,获得积分10
11秒前
可乐加冰完成签到,获得积分10
12秒前
黎明完成签到,获得积分20
12秒前
迷你的夜天完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890