Establish a patent risk prediction model for emerging technologies using deep learning and data augmentation

专利侵权 商标 风险分析(工程) 计算机科学 投资(军事) 知识产权 新兴技术 公共领域 损害赔偿 业务 人工智能 法学 哲学 政治学 操作系统 政治 神学
作者
Yung-Chang Chi,Hei‐Chia Wang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:52: 101509-101509 被引量:14
标识
DOI:10.1016/j.aei.2021.101509
摘要

Technology patents are considered the source and bedrock of emerging technologies. Patents create value in any enterprise. However, obtaining patents is time consuming, expensive, and risky; especially if the patent application is rejected. The development of new patents requires extensive costs and resources, but sometimes they may be similar to other patents once the technology is fully developed. They might lack relevant patentable features and as a result, fail to pass the patent examination, resulting in investment losses. Patent infringement is also an especially important topic for reducing the risk of legal damages of patent holders, applicants, and manufacturers. Patent examinations have so far been performed manually. Due to manpower and time limitations, the examination time is exceedingly long and inefficient. Current patent similarity comparison research, and the classification algorithms of text mining are most commonly employed to provide analyses of the possibility of examination approval, but there is insufficient discussion about the possibility of infringement. However, if a new technology or innovation can be accurately determined in advance whether it likely to pass or fail (and why), or is at risk of patent infringement, losses can be mitigated. This research attempts to identify the issues involved in evaluating patent applications and infringement risks from existing patent databases. For each patent application, this research uses Convolutional Neural Networks, CNN + Long Short Term Memory Network, LSTM, prediction model, and the United States Patent and Trademark Office (USPTO) public utility patent application and reviews results based on keyword search. Then, data augmentation is utilized before performing model training; 10% of the approved and rejected applications are randomly selected as test cases, with the remaining 90% of the cases used to train the prediction model of this research in order to determine a model that can predict patent infringement and examination outcomes. Experimental results of the model in this study predicts that the accuracy of each classification is at least 87.7%, and can be used to find the classification of the reason for a rejection of a patent application failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wxs发布了新的文献求助10
1秒前
可爱的函函应助酷酷巧蟹采纳,获得10
2秒前
2秒前
blablawindy发布了新的文献求助10
3秒前
科研小白发布了新的文献求助10
4秒前
李爱国应助嘿咻采纳,获得10
4秒前
4秒前
4秒前
Steven发布了新的文献求助10
5秒前
5秒前
迟有朝完成签到,获得积分10
7秒前
崔佳慧发布了新的文献求助10
7秒前
粤十一完成签到,获得积分10
8秒前
9秒前
angelinazh完成签到,获得积分10
9秒前
粤十一发布了新的文献求助10
10秒前
10秒前
桐桐应助pura卷卷采纳,获得10
10秒前
11秒前
无花果应助端庄的如花采纳,获得10
12秒前
Hello应助咸鱼咸采纳,获得10
13秒前
张铁柱完成签到,获得积分10
13秒前
天天快乐应助崔佳慧采纳,获得10
13秒前
卢卢完成签到,获得积分10
15秒前
foreverchoi发布了新的文献求助10
15秒前
酷酷巧蟹发布了新的文献求助10
15秒前
15秒前
所所应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得30
16秒前
田様应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
Meyako应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
LYK2997499077关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206