Highly Stretchable Conductive Covalent Coacervate Gels for Electronic Skin

自愈水凝胶 材料科学 乙二醇 导电体 凝聚 胶粘剂 共价键 聚合物 缩水甘油醚 纳米技术 复合材料 化学工程 高分子化学 化学 环氧树脂 有机化学 工程类 图层(电子) 双酚A
作者
Nam T. Nguyen,James Jennings,Amir H. Milani,Chiara Martino,Nguyen Thuy Ba Linh,Shanglin Wu,Muhamad Z. Mokhtar,Jennifer M. Saunders,Julien E. Gautrot,Steven P. Armes,Brian R. Saunders
出处
期刊:Biomacromolecules [American Chemical Society]
卷期号:23 (3): 1423-1432 被引量:10
标识
DOI:10.1021/acs.biomac.1c01660
摘要

Highly stretchable electrically conductive hydrogels have been extensively researched in recent years, especially for applications in strain and pressure sensing, electronic skin, and implantable bioelectronic devices. Herein, we present a new cross-linked complex coacervate approach to prepare conductive hydrogels that are both highly stretchable and compressive. The gels involve a complex coacervate between carboxylated nanogels and branched poly(ethylene imine), whereby the latter is covalently cross-linked by poly(ethylene glycol) diglycidyl ether (PEGDGE). Inclusion of graphene nanoplatelets (Gnp) provides electrical conductivity as well as tensile and compressive strain-sensing capability to the hydrogels. We demonstrate that judicious selection of the molecular weight of the PEGDGE cross-linker enables the mechanical properties of these hydrogels to be tuned. Indeed, the gels prepared with a PEGDGE molecular weight of 6000 g/mol defy the general rule that toughness decreases as strength increases. The conductive hydrogels achieve a compressive strength of 25 MPa and a stretchability of up to 1500%. These new gels are both adhesive and conformal. They provide a self-healable electronic circuit, respond rapidly to human motion, and can act as strain-dependent sensors while exhibiting low cytotoxicity. Our new approach to conductive gel preparation is efficient, involves only preformed components, and is scalable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
apple发布了新的文献求助10
刚刚
CarterXD完成签到,获得积分10
刚刚
紧张的友灵完成签到,获得积分10
刚刚
SciGPT应助之仔饼采纳,获得10
1秒前
liudiqiu应助追寻的易烟采纳,获得10
1秒前
Chem is try发布了新的文献求助10
1秒前
1秒前
vsoar完成签到,获得积分10
1秒前
2秒前
3秒前
GGGGGGGGGG发布了新的文献求助10
3秒前
3秒前
打打应助hhh采纳,获得10
4秒前
抓恐龙关注了科研通微信公众号
4秒前
碳点godfather完成签到,获得积分10
4秒前
ren完成签到,获得积分20
4秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
5秒前
TG_FY完成签到,获得积分10
5秒前
5秒前
hhh完成签到,获得积分10
5秒前
JamesPei应助诗轩采纳,获得10
6秒前
TT完成签到,获得积分10
7秒前
reck发布了新的文献求助10
7秒前
8秒前
DK发布了新的文献求助10
8秒前
英俊的铭应助ren采纳,获得10
8秒前
圈圈发布了新的文献求助10
8秒前
乐乱完成签到 ,获得积分10
9秒前
415484112完成签到,获得积分10
10秒前
yinyi发布了新的文献求助10
10秒前
10秒前
赵一丁完成签到,获得积分10
11秒前
成就绮琴完成签到 ,获得积分10
11秒前
Chen完成签到,获得积分10
11秒前
huanfid完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
Stitch完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672