计算机科学
解调
光学
卷积神经网络
误码率
角动量
水下
梁(结构)
传输(电信)
键控
物理
电信
人工智能
频道(广播)
海洋学
量子力学
地质学
作者
Wenqi Ma,Huimin Lu,Danyang Chen,Jianli Jin,Jianping Wang
出处
期刊:Journal of Optics
[IOP Publishing]
日期:2022-04-28
卷期号:24 (6): 065701-065701
被引量:2
标识
DOI:10.1088/2040-8986/ac675c
摘要
Abstract In this work, a novel 16-ary orbital angular momentum shift keying (OAM-SK) underwater wireless optical communication (UWOC) system based on convolutional neural network (CNN) demodulator and Gerchberg-Saxton CNN (GS-CNN) beam generator is proposed. The bit error rate (BER) performance of the proposed UWOC system with different turbulence intensity, transmission distance, and relative intensity of temperature and salinity is further investigated. By comparing with the results from the UWOC system based on GS beam generator, it is revealed that the BER performance can be improved obviously for the proposed OAM-SK UWOC system combining the CNN demodulator and GS-CNN beam generator.
科研通智能强力驱动
Strongly Powered by AbleSci AI